
DEVICE-EDGE-CLOUD INTELLIGENT COLLABORATION FRAMEWORK

Grant Agreement: 101092582

D3.1 Synthetic Test Environment

This project has received funding from the European Union’s Horizon
Europe Research and Innovation Programme under Grant Agreement
No 101092582.



D3.1 Synthetic Test Environment 2

Document Information

Deliverable number: D3.1

Deliverable title: Synthetic Test Environment

Deliverable version: 1.0

Work Package number: WP3

Work Package title: Open Framework and Virtual Training Environment

Responsible partner GWDG

Due Date of delivery: 2023-11-30

Actual date of delivery: 2023-11-30

Dissemination level: PU

Type: C

Editor(s):
Felix Stein (UGOE)

Mirac Aydin (GWDG)

Contributor(s):

Reviewer(s):
Dirk Pleiter (KTH)

Andrea Rivetti (TOP-IX)

Project name: Device-Edge-Cloud Intelligent Collaboration framEwork

Project Acronym: DECICE

Project starting date: 2022-12-01

Project duration: 36 months

Rights: DECICE Consortium

© 2022 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582



D3.1 Synthetic Test Environment 3

Document History

Version Date Partner Description

0.1 2023-11-15 GWDG/UGOE First draft of deliverable

0.2 2023-11-17 GWDG/UGOE Add additional sections

0.3 2023-11-24 KTH/TOP-IX Internal review

1.0 2023-11-28 GWDG/UGOE Final version

Acknowledgement: This project has received

funding from the European Union’s Horizon Eu-

rope Research and Innovation Programme un-

der Grant Agreement No 10192582.

Disclaimer: The content of this publication is

the sole responsibility of the authors, and in no

way represents the view of the European Com-

mission or its services.

© 2022 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582



D3.1 Synthetic Test Environment 4

Executive Summary

The main purpose of this deliverable is to create a synthetic test environment that can replicate

diverse real-world scenarios and serves as a critical enabler for an AI-based scheduler, facilitating

accelerated training and optimization. The document provides an overview of the synthetic test

environment’s architecture, analyzes its core elements, and explains the workflow within the envi-

ronment. The primary focus is the integration of synthetic test environment with the Digital Twin,

scenario database, and scheduler controller through APIs, enabling efficient data retrieval and its

integration into the scheduler’s training process. Furthermore, the document emphasizes the de-

ployment of the synthetic test environment in a Kubernetes cluster which is crucial for deployment

of containerized applications and microservice management in a heterogeneous compute continuum.

Finally, the deliverable considers further improvements of the synthetic test environment to optimize

the training process of the AI scheduler.

© 2022 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582



D3.1 Synthetic Test Environment 5

Contents

1 Purpose and Scope of the Deliverable 6

2 Abstract / publishable summary 6

3 Project objectives 7

4 Changes made and/or difficulties encountered, if any 7

5 Sustainability 7

6 Dissemination, Engagement and Uptake of Results 8

6.1 Target audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6.2 Record of dissemination/engagement activities linked to this deliverable . . . . . . . 8

6.3 Publications in preparation OR submitted . . . . . . . . . . . . . . . . . . . . . . . 8

6.4 Intellectual property rights resulting from this deliverable . . . . . . . . . . . . . . . 8

7 Detailed report on the deliverable 9

7.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7.2 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

7.2.1 Software Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7.2.2 Software Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7.2.3 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7.3 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7.3.1 Containerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7.3.2 Orchestration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7.4.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7.4.2 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8 References 20

A JSON Schema 21

© 2022 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582



D3.1 Synthetic Test Environment 6

1 Purpose and Scope of the Deliverable

The purpose of D3.1: Synthetic Test Environment is to provide the initial version of code and

documentation for the environment that allows the training of AI-schedulers. Slight adaptations

may be necessary after the initial version while the overall system architecture is not finalized yet

at the time of writing. It also contains a description of the architecture of the environment and

software components.

2 Abstract / publishable summary

In the scope of this deliverable, a synthetic test environment and its interactions with a digital twin,

an AI-scheduler and a scheduler controller were created. This environment was equipped with the

essential APIs required to establish seamless communication with the aforementioned components,

providing an integrated and cohesive testing framework.

To ensure the validity and reliability of the AI-scheduler, the MIT SuperCloud Dataset was employed

for testing purposes. This approach provided the project with a solid foundation for evaluation and

assessment.

In order to evaluate and test API calls within the environment, proper test functions have been

implemented. These functions played a pivotal role in the validation of system performance and

functionality. To streamline and automate the testing process, a Continuous Integration and Con-

tinuous Deployment (CI/CD) pipeline was established. This pipeline enhanced the project’s efficiency

and contributed to the reliability of the testing procedures.

In a forward-looking move towards improved scalability and management, all software components

were containerized, ensuring encapsulation and isolation. These containerized components were

then seamlessly deployed on a Kubernetes cluster, offering a robust infrastructure for the entire

framework. This deployment strategy further optimized the management of resources, making the

system highly adaptable to evolving requirements and workloads.

© 2022 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582



D3.1 Synthetic Test Environment 7

3 Project objectives

This deliverable contributes directly and indirectly to the achievement of all the macro-objectives

and specific goals indicated in section 1.1.1 of the project plan:

Macro-objectives Contribution of this deliverable

(O1) Develop a solution that allows to leverage
a compute continuum ranging from cloud and
HPC to edge and IoT.

The Synthetic Test Environment provides the
layers and interfaces that are used by other soft-
ware components which are important to de-
velop the framework.

(O2) Develop a scheduler supporting dynamic
load balancing for energy-efficient compute or-
chestration, improved use of green energy, and
automated deployment.

With the help of the Synthetic Test Environ-
ment, different scenarios can be simulated for
the faster training of the scheduler to support
better workload orchestration in the compute
continuum.

(O3) Design and implement an API that in-
creases control over network, computing and
data resources.

The Synthetic Test Environment integrates the
necessary APIs for the communication and data
flow between different components such as the
scheduler, Dynamic Digital Twin and the sched-
uler controller.

(O4) Design and implement a Dynamic Digital
Twin of the system with AI-based prediction ca-
pabilities as integral part of the solution.

The Synthetic Test Environment interacts with
the Dynamic Digital Twin and provides the nec-
essary data that is transferred to the AI-based
scheduler.

(O5) Demonstrate the usability and benefits of
the DECICE solution for real-life use cases.

The Synthetic Test Environment contributes
the development of the better components that
improve the performance of real-life use cases.

(O6) Design a solution that enables service de-
ployment with a high level of trustworthiness
and compliance with relevant security frame-
works.

The improvement and optimization of the AI-
based scheduler with the Synthetic Test En-
vironment will provide efficient service deploy-
ment in the compute continuum.

4 Changes made and/or difficulties encountered, if any

No significant changes to the project plan were made. No significant challenges were encountered

during implementation.

5 Sustainability

Design and optimization of components in the project are tightly coupled to multiple WPs such as

WP2, WP3 and WP4. Every partner in each work package will communicate their result regularly

for an optimal integration of each component into the framework

© 2022 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582



D3.1 Synthetic Test Environment 8

6 Dissemination, Engagement and Uptake of Results

6.1 Target audience

As indicated in the Description of the project, the audience for this deliverable is:

✓ The general public (PU)

The project partners, including the Commission services (PP)

A group specified by the consortium, including the Commission services (RE)

This report is confidential, only for members of the consortium, including the Commission
services (CO)

6.2 Record of dissemination/engagement activities linked to this deliverable

See Table 1.

Type of
dissem-
ination
and
commu-
nication
activities

Details Date and lo-
cation of the
event

Type of
audience
activities

Zenodo
Link

Estimated
number
of per-
sons
reached

None N/A N/A N/A N/A 0

Table 1: Record of dissemination / engagement activities linked to this deliverable

6.3 Publications in preparation OR submitted

See Table 2.

In prepa-
ration or
submitted?

Title All authors Title of the
periodical or
the series

Is/Will open
access be
provided to
this publica-
tion?

None N/A N/A N/A

Table 2: Publications related to this deliverable

6.4 Intellectual property rights resulting from this deliverable

None.

© 2022 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582



D3.1 Synthetic Test Environment 9

7 Detailed report on the deliverable

This deliverable deals with the technical description and system characteristics of the synthetic test

environment. The outline of this report portrays the implementation details for the DECICE training

framework ranging from high level architecture design to implementation and deployment. For this

purpose the deliverable is divided into four major parts. The first section deals with the architectural

design of the synthetic test environment. It goes into detail on how the training ground was designed

from a high level perspective and explains in particular the inner workings of the software component.

The section shows how information are being exchanged and concentrates on the data flow within

the system.

Section 7.2 goes into detail on what tools, libraries and frameworks were used in order to program

the synthetic test environment. This section also describes the information exchange within the

framework which was implemented using a micro service approach were individual software compo-

nents are being developed independently and connected afterwards via HTTP APIs. It also explains

how the DECICE project deals with software quality and what standards we want to pursue while

developing and deploying the software. The chapter concludes with a description of our documenta-

tion, regarding not only code documentation but also features our OpenAPI documentation as well

as our DECICE knowledge base to get an overview of the whole project.

The third part of this deliverable - section 7.3 - details the deployment of the synthetic test envi-

ronment. It shows how the DECICE project deals with deploying the application to a live system by

containerizing each micro service. This process requires a coordination service to be able to direct

and monitor each service and for this purpose we need the orchestration software Kubernetes. We

show how we deployed a fully functional synthetic test environment application on our OpenStack

cloud computing instance with the help of Kubernetes and Kubespray.

The last section of this deliverable, section 7.4, deals with the data collection for the digital twin as

well as the AI scheduler. We collected and processed data for our other components in the DECICE

framework as well as for the synthetic test environment itself. Having real data in the first place

omits the need to heavily adapt the training environment at a later stage to account for different data

and also serves as test data for complete run-throughs to test the inner workings of the application.

7.1 Architecture

The Synthetic Test Environment (STE) of the DECICE framework refers to the training and testing

ground for the AI-schedulers. The purpose of an STE is to provide a controlled and repeatable

environment for testing systems and software and it is a suitable training method when the costs

or risks of real-world training are too high, or when STEs are the only option for providing training

[Ros+00; RB01]. In case of this deliverable and future development, it represents a simulation of the

production environment for the actual DECICE framework together with its compute continuum.

For this deliverable and for our future development process, we are using the terms synthetic test

environment and virtual training environment (VTE) interchangeably. These two terms can be

considered synonyms and both of them refer to simulated environments that are used to train or

test systems and softwares. An outline of the current architecture of the STE is depicted in Figure 1.

© 2022 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582



D3.1 Synthetic Test Environment 10

As the purpose of the STE is to provide the environment and the control flow for training the

reinforcement learning models used by the AI scheduler, the training process of the STE starts by

calling the controller entity (1). It takes care of kicking off the whole training process by triggering

a metrics refresh on the digital twin (2) by requesting training scenarios from a database (DB) (3).

This ScenarioDB stores the accumulated training data as different scenarios of HPC/Cloud data

in a PostgreSQL database. Scenarios generally refer to various hypothetical or simulated situations

that are used to train the AI scheduler and to evaluate the performance, resilience, and adaptability

of it. In the first iteration the DB has to be filled manually beforehand but will be replaced by

an automated system in later development stages that is able to pull new data automatically from

different sources (i.e. pulling metrics from a Prometheus live service). After the data has been pulled

from the DB a wrapper takes care of processing the extracted data to a JSON and sends it over

an HTTP API to the digital twin (DT) (4). A digital twin typically is a virtual representation of an

actual physical product that encompasses its entire life cycle, including its physical and functional

characteristics. It acts as a virtual mirror, capable of exchanging and receiving information [TWE18].

In the case of the DECICE training framework it represents accumulated information of node and

job metrics (cf. Section 7.4) and holds them in memory for a fast pulling process.

After the scenario data has been pushed to the DT the VTE controller entity informs the scheduler

controller that new data for a training process is available (5). The scheduler controller pulls the

latest data from the DT (6) and applies a prioritization to create a scheduling queue from all jobs

with pending pods, ordering them based on their priority, age and whether parts of them are already

running (7). A subsequent filtering step is applied to determine the pool of eligible nodes based on

policies and resource requests for each pod in the current job (8). After the post-processing of the

JSON data the scheduler controller sends the data of current jobs and the eligible nodes per pod

to all schedulers that have been registered in the system (9). The first iteration of the DECICE

training framework includes three schedulers: an AI scheduler, an Integer Linear Programming (ILP)

scheduler, and a heuristic scheduler. Having three different schedulers in the training environment

gives the user the flexibility to observe various scheduler models, performance differences, and to

choose one of them. The heuristic scheduler, in this case, serves as a fallback option. Later

iterations should also enable the possibility to use, configure, and train your own schedulers. The

current number of schedulers serves only the purpose of a proof of concept, and there could be more

or fewer schedulers in the future, including your own scheduler. The respective wrapper converts

the JSON into a format that can be used by each individual scheduler. In the case of the JSON-to-

Tensor Wrapper, the JSON data is converted to tensors that can be processed by machine learning

models, which are then send to multiple models that each score the nodes eligible for a given pod.

In the case of the JSON-to-ILP Wrapper it is send to multiple ILP models that compute the optimal

scheduling decision based on their respective optimization target. In both cases the N.N. Model or

N.N. ILP symbolizes further models and ILPs with additional optimization targets (10).

After a run through all three wrappers send their scores to the evaluator component which compares

the scores from the AI schedulers to the scores from the ILP scheduler while using the heuristic

scheduler as a fall back (11) and sends them back for applying reward scores to the individual

models (12). The Aggregator weighs the scores and sends the final scheduling decisions back to the

scheduler controller (13).

© 2022 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582



D3.1 Synthetic Test Environment 11

Figure 1: DECICE Model Component Diagram - Training

7.2 Development

The development of a software application is a complex endeavor, encompassing a wide range of

activities, from conceptualizing the application’s purpose and functionalities to implementing and

deploying the final product. This section delves into the process of the software development of

the DECICE training framework, providing an overview of the key phases and activities involved.

First the key technologies, libraries and techniques used in this project are described and explained

and will form the basis of the architecture. The next part deals with the software quality standards

which the DECICE project implemented and we want to build upon for upcoming deliverables. This

implementation serves as a guideline for later deliverables and implementations and should be used

throughout the project to meet the quality standards we set ourselves.

Since the training environment is encapsulated into different software components, the subsequent

section deals with the communication of these based on HTTP requests and how they were imple-

mented. The last section deals with the documentation of the project, ranging from code documen-

tation for a better understanding of the intricacies of the code base, to the OpenAPI documentation

of our micro services together with the DECICE knowledge where the high-level architecture is ex-

plained. This way we are able to provide a sophisticated documentation for external as well as

internal partners who are involved in the project.

© 2022 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582



D3.1 Synthetic Test Environment 12

7.2.1 Software Engineering

The STE and its accompanying software components were programmed in Python. The reason for

this is Python being a versatile and widely used programming language that favors readability, has

an extensive library ecosystem and allows for rapid prototyping due to its simplicity. For the HTTP

backend we chose FastAPI. It is a high-performance web framework for building REST APIs [Ram].

The reason for working with this framework is the build-in OpenAPI schema which is automatically

generated with a UI documentation, including Swagger UI. It also provides automatic data validation

via the Pydantic library. Even though Python is a dynamically typed language, meaning that the

type of a variable is determined only during run time, Pydantic enforces type annotation throughout

the code base and thus serves as a guideline for a clean code approach. It allows for some sort

of static typing that compiled languages like Rust, Go or C offer without the need of relying on

compilation and purely use the Python interpreter for validation. Accordingly, we were able to still

use Python and its merits while at the same time being able to avoid demerits that interpreted

languages have. We chose Pytest as our testing framework. Its ease of use allows for sophisticated

and highly customizable unit tests enabling automated test execution and feedback loops during

merge requests. This integration ensures that tests are consistently run and results are readily

available for monitoring and ensuring integrity of our code base. The code base of the STE can be

found in DECICE GitHub repository [DEC].

Each service within the STE runs as a micro service in a containerized environment. This design

decision was made to give every partner the flexibility to choose their own approach when imple-

menting software features. While some components are easier to develop in Python, others might

benefit from a different language. Especially in the field scheduling decisions Go is often times a

preferred candidate. Each micro service receives and sends data via HTTP requests in the form of

CRUD operations [Moz]. On one hand this allows for an independent development of each software

component and on the other hand each service is encapsulated and has its own boundaries to operate

without affecting others on a large scale when changes are done.

7.2.2 Software Quality

Software quality is a critical aspect of the software development life cycle, ensuring that the final

product meets or exceeds expectations. In order to achieve this goal, an agile approach was also

utilized during the development of the code base.

Agile software development methods are a collection of practices that promote iterative, incremental

development and continuous improvement. In contrast to traditional waterfall methods, which

require all requirements to be defined upfront and then executed in a linear fashion, agile methods

emphasize continuous feedback and adaptation. By breaking down the development process into

smaller, manageable iterations, teams can regularly inspect and adapt their work. This iterative

development style is similar to constructing a prototype that grows and matures over time. As new

features and functionalities are introduced, the development team iteratively enhances the software,

responding to feedback and changing requirements. Moreover, the incorporation of micro services

during implementation aligns with the agile philosophy, enabling the construction of modular and

scalable architectures.

© 2022 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582



D3.1 Synthetic Test Environment 13

To ensure optimum software quality, a set of methods and tools has been integrated into the

development of the Synthetic Test Environment:

Ticket System: A centralized tracking system of GitLab has been used to create tickets for every

issue and development activity in the project. This systematic approach facilitates efficient issue

resolution and provides a transparent overview of project progress.

Branch Protection: Branch protection rules have been implemented to safeguard the integrity of

the main branch, preventing unauthorized or accidental changes from being merged directly into the

production environment. Merge requests serve as a gate keeping mechanism, requiring code reviews

and approvals before changes are integrated into the main branch. This rigorous review process

helps maintain code quality and stability, preventing regressions or unexpected errors.

Version Control System: Git and GitLab have been used during the development process. They

provide a robust version control system for tracking changes, enabling developers to maintain dif-

ferent versions of the codebase simultaneously. This system allows for reverting to previous versions

in case of errors or unexpected behavior, ensuring that developers can always maintain a stable and

functional codebase. GitLab’s branching feature facilitates parallel development, allowing different

teams to work on separate features without affecting the main codebase until the feature is ready

for integration.

Hosting Service: GitLab has served as a centralized repository for the project’s code, providing

a secure and accessible platform for developers to collaborate and contribute. Its integrated issue

tracking and merge request system streamline the development process, facilitating communication

and ensuring that changes are reviewed and approved before integration.

CI/CD and Automated Testing: A set of unit tests has been developed for the STE. These tests

involve sending HTTP requests to the various endpoints within the software component routes.

Continuous Integration/Continuous Deployment (CI/CD) pipeline on GitLab has been integrated to

automate this testing processes. This automation streamlines the testing phase, providing quick

feedback on code changes and contributing to overall development efficiency and reliability.

7.2.3 Documentation

As described in the Section 7.2.1 above, FastAPI has been used to develop the APIs in the STE.

FastAPI, in turn, utilizes SwaggerUI for documentation purposes. Each software components has

its own documentation accessible through the following link structure: http://IP:PORT/docs. By

navigating to this link, one can access the SwaggerUI documentation for each specific component.

This modular approach allows for the clear and distinct documentation of individual software com-

ponents, enhancing the overall manageability and understanding of the project. An example of an

API documentation of the digital twin in the STE is shown in Figure 2:

© 2022 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582



D3.1 Synthetic Test Environment 14

Figure 2: SwaggerUI API documentation of the Digital Twin

In addition to the component-specific SwaggerUI documentation, an internal documentation page

for the project has been setup and it is accessible to all project partners. This dedicated page is

hosted on GitLab, was built with Hugo [Hug] and serves as a comprehensive resource containing es-

sential information about the project. This centralized documentation hub provides project partners

with a convenient and organized source of information, fostering collaboration and ensuring that

stakeholders have access to the necessary details for effective engagement with the project.

Figure 3: Internal DECICE documentation

The internal documentation page consists of the following sections:

Docs: Design decisions on both high- and low-level aspects of the systems should be documented

here, including the reasoning behind individual decisions. This should also leave space for discussions.

Furthermore, designs should be supported by visualizations where necessary.

Tutorials: Learning more about DECICE and the technologies surrounding it is the purpose of this

section. Getting started with DECICE guides or other relevant technologies are placed in this section.

This also includes references to past presentations or workshops as theses are also learning materials.

How-Tos: Getting things done via code or shell snippets or longer instructions is the purpose of

this section. The focus lays on productivity, hacks and solutions to common problems. This section

© 2022 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582



D3.1 Synthetic Test Environment 15

is distinct from Tutorials as it focuses less on learning and more on productivity.

References: API documentation and other references to code that are automatically pulled from

the source code of individual projects is placed in this section. It should not be necessary to manually

create pages in this section.

7.3 Deployment

In the dynamic landscape of modern software development, containerization has emerged as a

transformative technology, providing a streamlined and efficient way to package, distribute and deploy

software applications. By encapsulating an application and its dependencies into a lightweight,

portable container, developers can ensure consistency across different environments and simplify

the deployment process. The orchestration of these containers is where Kubernetes, an open-source

container orchestration platform, takes center stage. Kubernetes not only automates the deployment,

scaling, and management of containerized applications but also facilitates the seamless coordination

of complex, distributed systems.

This chapter explains the containerization and orchestration of the STE. The following section 7.3.1

presents the containerization in detail, while section 7.3.2 is dedicated to orchestration.

7.3.1 Containerization

Containerization has emerged as a transformative technology in the realm of software development

and deployment, providing a robust solution to the challenges posed by traditional bare-metal setups.

Unlike traditional methods, containerization encapsulates an application and its dependencies into

a lightweight, portable unit known as a container. This approach brings several advantages, chief

among them being enhanced portability and consistency across various computing environments.

One of the key strengths of containerization lies in its ability to simplify deployment procedures.

Containers package an application along with its dependencies, libraries, and configurations, creating

a self-sufficient unit that can be effortlessly moved from one environment to another.

Complementing containerization is the microservice architecture, a paradigm shift in software de-

sign. Microservices advocate breaking down applications into small, independent services, each

addressing a specific business capability. These services communicate through well-defined APIs,

promoting modularity and agility. One of the primary advantages of microservices lies in scalability.

Unlike monolithic architectures, microservices enable individual components to scale independently,

optimizing resource allocation based on specific service requirements. Moreover, the fault isolation

inherent in microservices enhances system resilience. If one microservice encounters issues, it does

not necessarily compromise the entire application, contributing to a more robust and reliable system.

To optimize the management and deployment of diverse software components within the Synthetic

Test Environment, the approach of containerization and microservices has been utilized. For each

distinct software component, dedicated Dockerfiles were crafted, encapsulating the specific depen-

dencies, libraries, and configurations requisite for its seamless execution. The Dockerfiles, serving

as blueprints for container creation, systematically detail step-by-step instructions for configuring

the container environment. Leveraging the modularity inherent in Docker, this approach facili-

© 2022 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582



D3.1 Synthetic Test Environment 16

Figure 4: Architecture of containerization [Doc]

tated the creation of discrete and specialized containers tailored to the unique requirements of each

software component. The ensuing Docker images, generated from the aforementioned Dockerfiles,

encapsulated a self-contained and standardized representation of the respective software, fostering

consistency across development, testing, and production environments. This modular containeriza-

tion strategy not only streamlined the overall development process but also significantly enhanced the

maintainability and scalability of the Synthetic Test Environment by decoupling individual software

components, affording greater flexibility in terms of updates, scaling, and resource allocation.

7.3.2 Orchestration

Kubernetes stands as a open-source container orchestration platform, meticulously designed to opti-

mize the deployment, scaling, and administration of containerized applications. Kubernetes offers a

sophisticated solution for automating the orchestration, load balancing, and self-healing aspects of

containerized workloads. Its capabilities, including declarative configuration and automated scaling,

empower developers to concentrate on application development, alleviating concerns associated with

the intricacies of managing distributed systems. The general architecture of Kubernetes is shown in

Figure 5:

© 2022 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582



D3.1 Synthetic Test Environment 17

Figure 5: Kubernetes architecture [Ops]

The Kubernetes environment has been deployed on OpenStack. Comprising a bastion node for secure

access, a master node for overseeing the cluster’s state, and a worker node for executing application

workloads, this deployment utilizes OpenStack’s capabilities for fast deployment and testing of

the environment on virtual machines. The Figure 6 shows the test architecture of Kubernetes on

OpenStack:

Figure 6: Kubernetes cluster architecture on OpenStack for Synthetic Test Environment

The deployment process was orchestrated seamlessly through the use of Terraform and Kubespray.

Terraform, with its infrastructure-as-code approach, enabled the definition and creation of virtual

machines, network configurations, and the establishment of port permissions. This allowed for a

systematic and repeatable deployment, adhering to best practices in infrastructure management.

© 2022 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582



D3.1 Synthetic Test Environment 18

This ensured a solid foundation for the Kubernetes cluster.

The orchestration of the Kubernetes cluster was executed by using Kubespray. This tool, designed

for deployment at scale, automated the installation and configuration of the cluster components.

Through Kubespray, the bastion node, master node, and worker node were seamlessly integrated

into a cohesive and functional Kubernetes environment on the OpenStack infrastructure.

7.4 Data

Data is essential in the DECICE project for both the Digital Twin and the AI scheduler. The DT

relies on data to accurately represent the current state of the system they are modeling. The AI

schedulers use data to learn about the system’s behavior and to generate optimal schedules.

Without data, the DT would be unable to provide accurate insights into the system’s performance.

This would make it difficult to identify and address potential problems, and to optimize the system’s

operation. Similarly, without data, AI schedulers would be unable to generate effective schedules.

This could lead to bottlenecks such as overloaded nodes because of wrong scheduling.

7.4.1 Data Collection

The expectation from the AI scheduler in the DECICE project is to make a job scheduling as accurate

as possible. The AI scheduler can learn to identify patterns in job resource usage and deployment

patterns with valuable data. This information can then be used to make more informed decisions

about how to schedule jobs and deployments to optimize resource utilization and performance.

Additionally, the AI scheduler can learn to identify and respond to changes in the Kubernetes

environment, such as changes in the number of available nodes, changes in the resource demands

of jobs, and changes in the network topology. This information can be used to keep the Kubernetes

environment running smoothly and efficiently. To achieve this goal, a well-organized and accurate

data is needed.

In order to train the AI scheduler to schedule jobs and deployments in Kubernetes, a small portion

of the MIT Supercloud dataset was utilized to train the first version of the AI scheduler. This

dataset contains approximately 2TB of detailed monitoring logs from the MIT Supercloud system,

including CPU and GPU usage by jobs, memory usage, file system logs, and physical monitoring

data. The dataset was released in 2021 to foster innovative AI/ML approaches to the analysis of

large-scale HPC and datacenter/cloud operations [Sam+21]. There are also different datasets that

are publicly available such as Alibaba Cluster Trace Program [Ali] and Google Cluster Usage Traces

[Wil]. However, compared to the MIT Supercloud dataset, these datasets do not provide as much

precise information about I/O, resource allocation, and batch workloads. Accessing and processing

the necessary data is also made easier by the MIT Supercloud dataset. For this reason, it was

selected for the AI scheduler’s initial iteration.

Training the AI scheduler on the MIT Supercloud dataset allows it to learn how to efficiently schedule

jobs and deployments in Kubernetes, leveraging the richness of data and insights within the dataset

for the first iteration of the training. This can lead to improved performance, reliability, and cost-

effectiveness of the Kubernetes environment.

© 2022 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582



D3.1 Synthetic Test Environment 19

7.4.2 Data Processing

As described in Section 7.4.1 above, the MIT SuperCloud dataset was employed to provide real-

world data for training and evaluation purposes. The dataset was carefully analyzed and cleaned

to extract relevant parameters, including job ID, CPU and memory requirements, core count, total

node memory and so on. These extracted parameters were then converted from CSV to JSON

format to facilitate data storage and manipulation. The JSON data was subsequently stored in the

Digital Twin. Some of these parameters that have been obtained from the MIT dataset are depicted

in Table 3 below and an associated JSON schema can be found in appendix A.

Parameter Explanation Example Value

job id The ID of the job 74426695482326

cpus req CPU requirement of the job 5

mem req Memory requirement of the
job in MB

15360

time run Total time elapsed during job
run

415

node id The ID of the node r8015356-n976057

cpu cores The number of total cores in
the node

48

memory The total amount of memory
in the node in MB

393216

cpu load Average CPU load on the
node

3.62

memory load Average memory load on the
node

4.08

Table 3: Parameters that were obtained and converted from the MIT SuperCloud dataset

Once job requirements and node information are sorted, the scheduler controller sends the data to

the AI scheduler for training. The AI scheduler utilizes this training data to refine its scheduling

algorithms, enabling it to generate more efficient and optimized scheduling predictions.

© 2022 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582



D3.1 Synthetic Test Environment 20

8 References

[Ali] Alibaba. Alibaba Cluster Trace Program — github.com/alibaba/clusterdata. https:

//github.com/alibaba/clusterdata. [Accessed 17-11-2023].

[DEC] DECICE. Device Edge Cloud Intelligent Collaboration framEwork — github.com/DECICE-

project. https://github.com/DECICE-project. [Accessed 17-11-2023].

[Doc] Docker.What is a Container? — docker.com. https://www.docker.com/resources/

what-container/. [Accessed 13-11-2023].

[Hug] Hugo. The World’s Fastest Framework for Building Websites — gohugo.io. https:

//gohugo.io/. [Accessed 17-11-2023].

[Moz] MozDevNet. Crud - MDN web docs glossary: Definitions of web-related terms: MDN.

[Accessed 13-11-2023]. url: https://developer.mozilla.org/en- US/docs/

Glossary/CRUD.

[Ops] OpsRamp. An Overview of Kubernetes Architecture - OpsRamp— opsramp.com. https:

//www.opsramp.com/guides/why-kubernetes/kubernetes-architecture. [Ac-

cessed 13-11-2023].

[Ram] Sebastián Raḿırez. FastAPI Framework, High Performance, Easy to Learn, Fast to

Code, Ready for Production — fastapi.tiangolo.com. https://fastapi.tiangolo.

com/. [Accessed 17-11-2023].

[RB01] Daniela M. Romano and Paul Brna. “Presence and Reflection in Training: Support for

Learning to Improve Quality Decision-Making Skills under Time Limitations”. In: Cy-

berPsychology & Behavior 4.2 (Apr. 2001), pp. 265–277. doi: 10.1089/109493101300117947.

url: https://doi.org/10.1089/109493101300117947.

[Ros+00] F. D. Rose et al. “Training in virtual environments: transfer to real world tasks and

equivalence to real task training”. In: Ergonomics 43.4 (Apr. 2000), pp. 494–511. doi:

10.1080/001401300184378. url: https://doi.org/10.1080/001401300184378.

[Sam+21] Siddharth Samsi et al. “The MIT Supercloud Dataset”. In: CoRR abs/2108.02037

(2021). arXiv: 2108.02037. url: https://arxiv.org/abs/2108.02037.

[TWE18] Rajeeth Tharma, Roland Winter, and Martin Eigner. “An approach for the implemen-

tation of the digital twin in the automotive wiring harness field”. In: (2018). doi:

10.21278/idc.2018.0188. url: https://doi.org/10.21278/idc.2018.0188.

[Wil] J. Wilkes. Clusterdata 2019 Traces — github.com/google/cluster-data. https : / /

github.com/google/cluster-data. [Accessed 17-11-2023].

© 2022 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata
https://github.com/DECICE-project
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://gohugo.io/
https://gohugo.io/
https://developer.mozilla.org/en-US/docs/Glossary/CRUD
https://developer.mozilla.org/en-US/docs/Glossary/CRUD
https://www.opsramp.com/guides/why- kubernetes/kubernetes-architecture
https://www.opsramp.com/guides/why- kubernetes/kubernetes-architecture
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://doi.org/10.1089/109493101300117947
https://doi.org/10.1089/109493101300117947
https://doi.org/10.1080/001401300184378
https://doi.org/10.1080/001401300184378
https://arxiv.org/abs/2108.02037
https://arxiv.org/abs/2108.02037
https://doi.org/10.21278/idc.2018.0188
https://doi.org/10.21278/idc.2018.0188
https://github.com/google/cluster-data
https://github.com/google/cluster-data


D3.1 Synthetic Test Environment 21

A JSON Schema

{

"$schema": "http://json-schema.org/draft-07/schema#",

"title": "Json Schema for NodePool",

"type": "object",

"properties": {

"id": {

"type": "string"

},

"cpu_cores": {

"type": "number"

},

"memory": {

"type": "number"

},

"cpu_load": {

"type": "number"

},

"memory_load": {

"type": "number"

}

},

"required": [

"id",

"cpu_cores",

"memory",

"cpu_load",

"memory_load",

]

}

© 2022 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582


	Purpose and Scope of the Deliverable
	Abstract / publishable summary
	Project objectives
	Changes made and/or difficulties encountered, if any
	Sustainability
	Dissemination, Engagement and Uptake of Results
	Target audience
	Record of dissemination/engagement activities linked to this deliverable
	Publications in preparation OR submitted
	Intellectual property rights resulting from this deliverable

	Detailed report on the deliverable
	Architecture
	Development
	Software Engineering
	Software Quality
	Documentation

	Deployment
	Containerization
	Orchestration

	Data
	Data Collection
	Data Processing


	References
	JSON Schema

