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Executive Summary

In our pursuit of optimizing scheduling processes, we employ a Virtual Training Environment (VTE)

to train, improve and test AI models for scheduling. This VTE simulates a Digital Twin (DT)

based on predefined scenarios. Our training methodology involves running AI models against these

scenarios, dynamically updating them, and assessing AI scheduler performance using specific metrics.

This unique approach allows us to achieve faster-than-real-time training and enabling parallel training

of multiple AI scheduler instances.

The proposed AI scheduler has the ability to view the entire DT, including the job queue and the

state of running jobs. It optimizes resource allocation while respecting user specifications and can

dynamically reschedule jobs for better placement. Unlike traditional heuristics-based schedulers,

our approach leverages machine learning to gain a deeper understanding of system dynamics and

optimizing resource allocation without increasing complexity unnecessarily.

Furthermore, we are actively exploring deep learning strategies to further enhance scheduling per-

formance. The primary purpose of our AI scheduler is to optimize workflow and resource utilization,

both with and without historical data. It assists the VTE controller in making informed decisions

to handle incoming workloads effectively, contributing to enhanced resource pool management and

workflow optimization. Our commitment to advancing scheduling capabilities within this framework

underscores our dedication to improving resource utilization and workflow efficiency across various

industries and applications.
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1 Purpose and Scope of the Deliverable

The purpose of this deliverable is to outline the AI Scheduler, which is set to contribute to the

optimization of workflows and resource utilization within a compute cluster based on available

historical data, if any. The main purpose of the AI scheduler is to provide advanced scheduling

capabilities to the DECICE framework. For the purpose of prototyping, any AI schedulers developed

so far are integrated into the VTE (Virtual Training Environment), where they can be trained, tested

and evaluated in terms of making optimal scheduling decisions for incoming workloads in the context

of compute and storage.

2 Abstract / publishable summary

In this deliverable, we introduce innovative AI Scheduler prototypes for efficient storage and compute

management in diverse computational environments. Our work focuses on developing AI-driven

algorithms capable of optimizing task scheduling in compute environments consisting of cloud, high

performance computing (HPC) and edge, which include diverse storage systems. We leverage deep

learning models to predict the best allocation strategies, balance workloads and improve overall

system performance. These AI Scheduler prototypes are designed to dynamically adapt to varying

workloads, ensuring efficient resource utilization and reducing operational costs.
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3 Project objectives

This deliverable contributes directly and indirectly to the achievement of all the macro-objectives

and specific goals indicated in section 1.1.1 of the project plan:

Macro-objectives Contribution of this deliverable
(O1) Develop a solution that allows to leverage
a compute continuum ranging from cloud and
HPC to edge and IoT.

The AI Scheduler prototypes aim to enhance
the compute continuum capabilities by optimiz-
ing task allocation across diverse computational
environments, including cloud, HPC, edge and
IoT.

(O2) Develop a scheduler supporting dynamic
load balancing for energy-efficient compute or-
chestration, improved use of green energy, and
automated deployment.

The proposed prototypes contribute to dynamic
load balancing, ensure energy-efficient orches-
tration and support the use of green energy in
compute systems.

(O3) Design and implement an API that in-
creases control over network, computing and
data resources.

The deliverable contributes to the development
of an API that enhances the control and ef-
ficiency of resource management, thereby im-
proving the overall system performance.

(O4) Design and implement a Dynamic Digital
Twin of the system with AI-based prediction ca-
pabilities as integral part of the solution.

This deliverable aids in implementing a Dy-
namic Digital Twin, equipped with AI-based
predictive models, enhancing real-time decision-
making and resource allocation.

(O5) Demonstrate the usability and benefits of
the DECICE solution for real-life use cases.

The AI Scheduler Prototypes are tailored to
demonstrate practical benefits in real-world sce-
narios, demonstrating their adaptability and ef-
ficiency in various use cases.

(O6) Design a solution that enables service de-
ployment with a high level of trustworthiness
and compliance with relevant security frame-
works.

The proposed deliverable focuses on creating
trustworthy and secure scheduling solutions that
comply with relevant security frameworks to en-
sure the integrity and safety of the deployed ser-
vices.

4 Changes made and/or difficulties encountered, if any

During the development of the AI Scheduler prototypes, we encountered several challenges. Initially,

the complexity of integrating AI models into existing compute and storage systems posed significant

technical difficulties. The target platform for our prototypes is Kubernetes, which offers dedicated

options for integrating a compute scheduler, however, Kubernetes does not provide dedicated options

for integrating a cluster-wide storage scheduler. In Kubernetes the provisioning of persistent volumes

is up to storage drivers, which can apply their own rules and policies. Developing a fully agnostic

storage scheduler is beyond the scope of the DECICE project so we had to compromise on integration

with a few selected storage drivers. Furthermore, additional effort was required to identify and

understand data sets, which could be used for training our prototypes.
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5 Sustainability

The proposed AI Scheduler Prototypes contribute to the sustainability of computational resources in

multiple ways. First, they promote efficient resource utilization, reducing energy consumption and

operational costs in compute environments. Secondly, the prototypes are designed with scalability in

mind, ensuring their long-term applicability in evolving computational landscapes. We have estab-

lished links with other deliverables in the project, particularly those focusing on system architecture

and cloud computing, to create synergies and integrate our solutions effectively. Key lessons learned

include the importance of flexibility in AI model design to adapt to different system architectures

and the need for continuous performance evaluation to ensure long-term viability.

6 Dissemination, Engagement and Uptake of Results

6.1 Target audience

As indicated in the Description of the project, the audience for this deliverable is:

✓ The general public (PU)

The project partners, including the Commission services (PP)

A group specified by the consortium, including the Commission services (RE)

This report is confidential, only for members of the consortium, including the Commission
services (CO)

6.2 Record of dissemination/engagement activities linked to this deliverable

See Table 1.

Type of
dissem-
ination
and
commu-
nication
activities

Details Date and lo-
cation of the
event

Type of
audience
activities

Zenodo
Link

Estimated
number
of per-
sons
reached

None N/A N/A N/A N/A 0

Table 1: Record of dissemination / engagement activities linked to this deliverable

6.3 Publications in preparation OR submitted

See Table 2.
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In prepa-
ration or
submitted?

Title All authors Title of the
periodical or
the series

Is/Will open
access be
provided to
this publica-
tion?

In preparation HOSHMAND
Algorithm:
Next-Gen HPC
Compute Sched-
uler

Michael Bidol-
lahkhani, Aasish
Kumar Sharma, Ju-
lian Kunkel

Pre-print -

Table 2: Publications related to this deliverable

6.4 Intellectual property rights resulting from this deliverable

None.

6.5 GitHub

The source codes and the initial implementation of the AI schedulers can be found on the DECICE

GitHub project page [DEC].

7 Detailed report on the deliverable

7.1 Background

In scenarios involving a compute continuum, which encompasses a range of devices from single

board edge devices to servers with high-end hardware, identifying an optimal workflow is a complex

task [Jan+23]. A compute continuum refers to a system that integrates cloud servers with HPC

and edge devices such that managing workload distribution across such a diverse system requires a

sophisticated control mechanism [DMO21]. The challenge lies in the inherent difficulty for human

operators to effectively organize and administer these systems [Fan21]. This has led to the exploration

of intelligent machine assistance, where machines are programmed to learn and apply their knowledge

in action. In the field of Artificial Intelligence (AI), various algorithms, methods, and mathematical

models are developed to simulate real system prototypes, aiming to enable machines to autonomously

learn and respond to complex scenarios.

Specifically, for DECICE use cases, there is a need for an efficient resource orchestrator or scheduler

capable of automating and optimizing workflows based on incoming user and system workloads.

The goal is to create workflows that are highly efficient in terms of time and resource utilization,

thereby reducing energy consumption and associated costs. The question then arises: What kind of

scheduler can effectively meet these requirements? Our preliminary research, drawing upon recent

AI advancements, suggests the potential of a scheduler such as KAIROS [Li+23], which manages

workloads based on requested runtime and throughput. Building upon this, we propose a refined

version named Lil KAIROS. This model is tailored to consider the available resources on each node

during resource allocation, thereby enhancing the efficiency of runtime requests.
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7.1.1 Illustrative Example

To elucidate the application of our AI-driven scheduling system, consider the following scenario: A job

request necessitates a node equipped with 4CPUs and 10GB of memory for a specific computational

task. Similarly, another job requests for 2 CPUs and 8GB of memory. In our heterogeneous system

environment, we have two nodes with distinct configurations. The first node features 2 CPUs and

4GB of memory, while the second node comprises 1 CPU, 1GPU, and 8GB of memory. The challenge

lies in determining the most efficient execution strategy for this job.

Key considerations include identifying the most suitable node(s) for job allocation and strategizing to

minimize the total machine time, which encompasses both run time and waiting time. The ultimate

objective is to optimize resource utilization within the constraints of our heterogeneous system. This

scenario exemplifies the complex decision-making processes facilitated by our AI scheduling system,

showcasing its capability to navigate and efficiently allocate resources in diverse computational

landscapes.

7.2 System Architecture and Design

7.2.1 General Overview of Common Scheduling Systems Architecture

In addressing the challenges highlighted in our compute continuum scenario, particularly as depicted

in the illustrative example in Section 7.1.1, it is imperative to have a thorough understanding of the

system’s architecture and resources. Traditionally, the Von-Neumann architecture, which primarily

consists of CPU, Memory, Input and Output units, serves as the foundational model for most

computing systems [AOE07].

Focusing on the CPU and Memory components, while temporarily setting aside the input and output

aspects, we can explore various system designs. According to Flynn’s taxonomy, systems can be

classified into four distinct types:

1. SISD (Single Instruction Single Data), exemplified by Intel x86 and 64-bit architectures.

2. SIMD (Single Instruction Multi Data), such as NVIDIA AVX100, where CPUs and GPUs are

combined.

3. MISD (Multi Instruction Single Data), a less common type not immediately relevant to our

context.

4. MIMD (Multi Instruction Multi Data), for instance, Intel Xeon Phi, influenced by the Larrabee

microarchitecture.

These types can further be categorized into systems with shared or distributed memory architectures.

In contemporary compute continuum environments as shown in Figure 1, hybrid or heterogeneous

systems are prevalent. These systems feature a combination of SISD, SIMD, MISD and MIMD

nodes, along with both shared and distributed memory models. To effectively manage such diverse

configurations, our focus shifts to the development of specialized AI Schedulers:

1. Compute AI Scheduler: Tailored for managing computational tasks across varied processing

units.
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2. Storage AI Scheduler: Designed to handle data storage and retrieval, taking into account

the unique requirements of different storage media.

The necessity for distinct AI Schedulers arises from the fact that compute and storage tasks have

divergent characteristics and optimization parameters, making a one-size-fits-all approach impracti-

cal. This bifurcation allows for more targeted and efficient resource allocation and job scheduling in

a complex, heterogeneous compute environment.

Figure 1: System Architecture Illustration

7.2.2 Architectural Overview of DECICE Project’s AI Scheduler

In the context of the DECICE project, the architecture for the AI Scheduler is intricately designed

to manage and optimize workloads within a heterogeneous computing environment. The prototype

of the DECICE AI scheduler operates within a Synthetic Test Environment (STE), which functions

as both a training and testing ground, simulating a production environment. This virtual training

environment (VTE) is crucial for testing and training AI schedulers under controlled and repeatable

conditions, especially when real-world training is impractical or too costly.

The architecture of the DECICE AI scheduler is comprehensive, encompassing various parts that

interact with each other. The process initiates with the VTE controller, which triggers a metrics re-

fresh in the Digital Twin (DT). The DT, a virtual representation of the physical compute continuum,

accumulates node and job metrics and holds this data in memory for rapid processing. This data,

stored as scenarios in the ScenarioDB, is processed and pushed to the DT. Once the metrics refresh

is completed, the VTE controller is informed and can trigger the next operation via the scheduler

controller.

The scheduler controller plays a pivotal role in prioritizing and filtering jobs and nodes to prepare them

for scheduling. The DECICE framework incorporates multiple schedulers, including AI schedulers,

integer linear programming (ILP) schedulers, and heuristic schedulers. Each scheduler assesses the

suitability of nodes for job allocation based on a variety of factors, including resource availability

and job requirements.

The scores generated by these schedulers are evaluated and aggregated, ensuring that the final

scheduling decisions are well-balanced and optimized. This complex orchestration ensures efficient

resource allocation, job scheduling, and workload management across the compute continuum, ef-

fectively addressing the challenges posed by the heterogeneous nature of modern computational
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D2.3 AI Scheduler Prototypes for Storage and Compute 12

environments.

7.3 System Modeling

The main elements in the HPC compute and storage system are shown in Figure 2, along with their

respective interconnects. In the case of the compute continuum (Figure 1), there might be different

Figure 2: A simple compute and storage nodes of an HPC system, along with their interconnects.

scenarios where the nodes have different compute capacities as well as storage systems (compute

with cache, primary and secondary memory/storage) along with different connecting networks.

Node 1 Node 2

Storage

Network

I/O

Job Scheduler

Figure 3: Simple scheduling instance with two compute nodes and shared storage.

7.4 Workflow Model

Figure 3 can be a good demonstration for a simplified workflow model of a single cycle scheduling,

which is renovated for the complex systems with the design and implementation of the DECICE

showcase workflow model (shown in Figure 4). Let us consider each cycle as a pool of Jobs J

and there could be j number of jobs, i.e., J = {J1, J2, J3, ..., Jj}. Each job has at least one Task

T , where there might be n number of Tasks i.e., T = {T1, T2, T3, ..., Tn}. Each task requests or
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Figure 4: A cyclic workflow of an instance forecast (DECICE proposal).

demands some resources, suppose these resources are termed as machines M and there could be

m number of machines with the same or different capacities, i.e., M = {M1,M2,M3, ...,Mm},
finally, te be the amount of estimated time demanded/requested for a single machine. Now, the

total requested time (te) for a single job with a single task executed in a single machine is given by

te(Jj=1) = te(Tn=1,Mm=1) (1)

where te(Tn,Mm) is the time taken for the task. This time could be different for different tasks

executed in different machines that have different capacities. Therefore, the total time taken for a

job with more than one task executed in different machines (same or different capacity) is given as

te(Jj=1) = Σn
Tn=1

Σm
Mm=1

te(Tn,Mm) (2)

Likewise, the total work done by a machine (M1) is given by

η =
Σj
Jj=1

Σn
Tn=1

te(Tn,M1, Jj)

Σj
Jj=1

Σn
Tn=1

tr(Tn,M1, Jj)
× 100% (3)

where te(Tn,M1, Jj) and tr(Tn,M1, Jj) is the estimated-time and the real-time taken by the

machine(M1) to complete the job.

Now, the problem for a scheduler is how to map these jobs. Which machine to allocate for execution

for a particular job? Finally, from where and how to handle the respective I/O (Input/Output device

or storage) to optimally utilize the system.
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Considering the I/O part of the evolving architecture of upcoming exascale High-Performance Com-

puting (HPC) systems, traditionally, HPC storage systems were simple, with a parallel back-end file

system and tape-based archives. However, the trend is shifting towards a more complex multi-tier

storage hierarchy. This new architecture includes features such as node-local non-volatile main mem-

ory (NVMM) with performance comparable to DRAM, NVMe-based SSDs within compute nodes

boasting high bandwidth, SSDs on I/O nodes, parallel file systems, campaign storage and archival

storage [Car+20].

This highlights a challenge in the current architecture of supercomputers, where the I/O stack is not

utilized optimally due to a lack of information about the state of HPC resources and I/O accessed

by multiple applications. This sub-optimal usage results in missed opportunities for global I/O

optimization, leading to issues such as redundant data movement, contention for large I/O accesses,

and delayed overall performance. To address these issues and optimize I/O performance for multiple

applications sharing resources, two main problems need attention: allocating applications to proper

compute resources and managing I/O data through scheduling to prevent conflicts.

Suppose that, there are I/O or storage systems having a number of I/O nodes at different locations,

i.e., (IO1, IO2, ..., IOn) that are available to perform I/O operations from the compute nodes to

the respective storage location, then for each job td(l,l
′)

dBW
there will be data which is transferred from

location l to location l′ using bandwidth dBW . Likewise, there could be ni successive blocking and

non-blocking operations for compute nodes or machines adding up waiting time cost tw(l, l
′) for the

job (in an aggregation of all the tasks of a job). So I/O overhead time costs tIO, i.e., data transfer

cost and waiting time cost for these are given by

tIO(Jj) = Σj
1twj(l,l′) +

tdj(l,l′)

dBW
(4)

With that, the total time cost or the overall time cost for the execution of j jobs is given by

to(Jj) = Σj
1te(Jj) + tIO(Jj) (5)

7.4.1 Mapping Use Cases

The possible mapping use cases are:

1. J job requesting for M machines (resources) for T amount of time

2. A job executing a single task in a single machine with no task splitting (homogeneous case)

3. A job executing many tasks across different machines (heterogeneous case)

If we evaluated the system I/O performance by executing the use cases under two different config-

urations like (i) single job and (ii) multiple jobs then:

1. In a single job case, one task could execute exclusively, having full access to the complete I/O

bandwidth provided by the node.

2. In contrast, with multiple jobs, several task instances could execute simultaneously (accessing

two different storage (files)) and competing for the same I/O resources.
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In this case, the total bandwidth is degraded by d which is given by

d = 1−
ΣdBW(MultipleJobs)

dBW(SingleJob)

(6)

where dBW(MultipleJobs)
is the aggregated data bandwidth of multiple jobs configurations and dBW(SingleJob)

is the bandwidth of single job configuration.

7.4.2 Scheduling Use Cases

Besides, all the above cases, in the most trivial case, a scheduler should follow these policies:

• Case I:

– When a job has at least a single task and the demand for resources is out of the capacity

(available resource) then the job should be rejected and should be halted from the job

queue (job cancel),

– Otherwise, the task should be allocated/mapped respective resources as per the demand.

• Case II:

– When a job has more than one task and the demand for resources for any single task is

out of capacity then only that particular task should be rejected not the complete job,

unless and until it has some dependency on the following other tasks.

– In the case of task dependency all the dependent tasks should be rejected and finally

the job should not be mapped with any resources. The case of task dependency is not

included in this prototype. So, all the tasks listed in the queue, demanding resources out

of capacity should be rejected.

– Otherwise, the job should be allocated the respective resources.

As explained in the example Section 7.1.1 above there are two nodes, one node with 2CPUs and

4GB of memory, and another node with 1CPU and 1GPU with 8GB of memory, and already clear

that we have heterogeneous nodes. Moreover, as per the job request, the application demands

4CPUs and 10GB of memory whereas another job is requesting 2CPUs and 8GB of memory. So,

in general view both the jobs have a single task. Where the tasks of the first and the second jobs

are requesting the resources which seems out of capacity.

How should an AI scheduler handle this?

The proposed AI scheduler handles these requests and rejects the first job request whereas accepts

and maps the respective resource for the second job (1 CPU and 1GPU with 8GB of memory). For

this purpose, there is a score (an index) calculated based on available resources during prediction.

So, to map the resources this index from the demand side is mapped with the predicted index and

when this is under suitable conditions (demand is less than or equal to the available resources) then

the respective demand is mapped with the respective resource.

We have already mathematically modeled these things in Section 7.4 with the scheduling use cases

and further explained the AI-scheduler Section 7.5 and its technique in Algorithm 1 try to find the
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estimations so it would be helpful for the verification.

7.5 AI Scheduler: Compute Resource Mapper

The compute component of the AI Scheduler utilizes a sophisticated RNN architecture to manage

and allocate computational tasks efficiently within HPC clusters. This AI-driven approach considers

several factors, such as the specific characteristics of the jobs, the capabilities and current load of each

node, and the overall system status. It intelligently schedules jobs using the method shown in Figure 5

and Algorithm 1 by predicting the optimal node assignments, balancing workload distribution, and

minimizing job waiting times.

Algorithm 1 AI Compute Scheduler

1: Input: List of Jobs (J), List of Nodes (N)
2: Output: Job-Node Assignments
3: for each job in J do
4: Determine job requirements (CPU, GPU, Memory)
5: for each node in N do
6: Evaluate node based on resource availability, workload, and performance
7: end for
8: Predict job runtime and system efficiency using RNN model
9: Assign job to node optimizing resource utilization and workload balance

10: end for
11: Monitor system performance and update RNN model

The scheduler adapts in real-time to the dynamic nature of the HPC environment, enhancing resource

utilization and overall system performance.

In the provided scenario example in Section 7.1.1, the AI scheduler will first assess the resource

requirements of the job, including CPU and memory needs. It then evaluates the available nodes in

the HPC cluster. Using its RNN model, the scheduler predicts the runtime and efficiency of assigning

the job to each node. Considering the limited resources of the first node and the specialized resources

(GPU) of the second node, the scheduler may decide to split the job’s tasks if possible, or it might

queue the job until sufficient resources are available. The decision is based on optimizing the overall

system efficiency and ensuring the job’s requirements are adequately met. This example illustrates

the AI scheduler’s ability to make complex decisions in a dynamic and heterogeneous computing

environment.

7.5.1 Data Handling and Pre-procession

Data handling and pre-processing is necessary because the historical abstract data includes informa-

tion that might not be relevant and should be ETLed (Extract, Transformed, and Loaded) or cleaned

into a meaningful format suitable for the scheduler. For the part of compute scheduler it requires only

job characteristics, which includes job Id ”Job Id”, requested CPU ”CPU req”, requested memory

”memory req”, amount of reservation time ”time eligible”, and actual job runtime, which is calcu-

lated taking the difference of job execution start time and job execution end time. Likewise, for the

system resource configuration part, it requires node characteristics that include, total CPU ”CPU”,
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Figure 5: Flowchart for the AI scheduler algorithm using Recurrent Neural Network (RNN)

total memory ”memory”, occupied CPU ”CPU loaded”, occupied memory ”memory loaded”, and

finally, a resource id column (for future development).

7.5.2 Modeling the Compute Resources

The AI Scheduler for compute resources is designed to optimize the allocation and management

of computational tasks within a heterogeneous HPC system as shown in Figure 6. This system

encompasses a variety of computing devices, each with distinct capabilities and resource availabilities.

The scheduler’s role is to efficiently map these diverse compute resources to the appropriate tasks.

By leveraging AI techniques, the scheduler can predict and adapt to varying workloads and resource

demands, ensuring that computational tasks are executed in the most efficient manner possible.

In addition to handling standard CPU-based tasks, the AI Scheduler is adept at managing jobs

requiring specialized hardware, such as GPUs, which are commonly found in heterogeneous compute

environments. This capability is particularly valuable for tasks that are compute-intensive or have

specific hardware requirements. The scheduler dynamically allocates these specialized resources

based on the needs of each job, thereby maximizing the utilization and throughput of the entire

system. The AI scheduler’s data handling framework is instrumental in achieving this level of

efficiency. By pre-processing and transforming raw data into actionable insights, the scheduler can

make informed decisions about resource allocation. This involves analyzing job characteristics, such

as required computing power, memory needs, and expected runtime, as well as assessing the current

state of system resources. The scheduler’s ability to process and interpret this data is key to its

success in managing a heterogeneous HPC environment.
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Figure 6: Heterogenous Components in Scalable HPC System

7.6 AI Scheduler: Storage Resource (I/O) Mapper

The AI scheduler for storage, implemented using fuzzy logic, focuses on optimizing data placement,

migration, and replication across multiple storage solutions in the compute continuum. The scheduler

evaluates the characteristics and performance of different storage systems, including their capacities,

redundancy levels, and access speeds.

7.6.1 AI-Fuzzy Storage Scheduler Implementation

The AI Storage Scheduler (Algorithm 2) is implemented to dynamically adapt to changes in workload

and resource availability. It processes storage data to assess available and used storage percentages

and applies fuzzy logic for efficient decision-making.

Processing Storage Data The scheduler processes storage data from JSON, calculating the avail-

able and usage percentages of storage for each node. This data is critical for making informed

decisions about storage management.

Fuzzy Logic Decision-Making

• The scheduler applies fuzzy logic based on the processed data to determine actions such as

expanding, maintaining, or backing up storage.

• Fuzzy rules are defined based on the available and usage percentages of storage.

• Decisions are made for each node, considering the need for expansion, backup, or maintenance.
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Algorithm 2 AI Storage Scheduler (Fuzzy Logic)

1: Input: Data Requests (D), Storage Options (S)
2: Output: Data Management Strategy
3: for each data request in D do
4: Analyze data attributes (size, access frequency, etc.)
5: for each storage option in S do
6: Apply fuzzy logic to determine storage suitability
7: Define fuzzy sets and membership functions
8: Apply fuzzy rules for decision making
9: Example Rule: IF size is large AND frequency is high THEN prefer fast-access storage

10: end for
11: Use inference engine for rule evaluation
12: Defuzzify output to concrete storage decisions
13: end for
14: Adapt to changing patterns and update rules based on performance

This implementation ensures that storage resources are optimally utilized, balancing performance

needs against storage costs and ensuring high availability and fault tolerance.

7.6.2 Details on Fuzzy Logic Implementation

The AI Storage Scheduler’s fuzzy logic decision-making process is detailed, with specific mention of

the rules and membership functions used. The scheduler categorizes parameters like ”data size” and

”access frequency” into fuzzy sets and applies rules to decide on actions like expansion, backup, or

maintenance based on the fuzzy logic output.

Fuzzy Rules and Actions

• Fuzzy rules are formulated based on the storage available and usage percentages.

• Actions such as ”expand”, ”maintain”, and ”backup” are determined by these rules.

• The process includes defuzzification to translate fuzzy results into concrete actions for each

storage node.

This approach allows the AI Scheduler to effectively manage diverse and uncertain data and system

attributes, offering a sophisticated and adaptable resource management solution.

Applying Fuzzy Rules

• The scheduler utilizes fuzzy rules of the form: IF [condition] THEN [action]. An example rule

could be, “IF data size is large AND access frequency is high THEN prioritize local storage.”

• These rules are derived from expert knowledge or data analysis, tailored to reflect optimal data

management decisions.

Inference Engine

• This component processes the fuzzy rules based on input data, evaluating the degree of

satisfaction for each rule to inform the scheduling decision.
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Defuzzification

• The process of defuzzification translates fuzzy results into concrete actions or values, such as

determining a priority level for data placement.

Decision-Making Example

• Consider data with the following attributes: size = 500GB, access frequency = ‘frequent’,

and network bandwidth = ‘moderate’. The scheduler evaluates applicable rules such as, “IF

data size is large AND access frequency is frequent THEN prioritize high-speed storage.” The

inference engine processes these rules and, through defuzzification, concludes on a specific

storage choice or priority level, optimally aligning with the given data attributes and system

conditions.

The fuzzy logic-based AI scheduler effectively manages diverse and uncertain data and system at-

tributes, offering a flexible and sophisticated approach to resource management. The subsequent

sections will further elaborate on the mathematical modeling and implementation specifics of this

system.

7.7 AI Scheduler: Challenges

The development and deployment of AI-driven scheduling systems, particularly in the context of

distributed systems, present unique and significant challenges. These challenges necessitate the

creation of a specialized project to address them effectively. Key challenges include:

7.7.1 Handling System Faults and Anomalies

• System Disappearances: In a distributed environment, system nodes may become inter-

mittently unavailable or fail entirely. The AI Scheduler must be capable of detecting these

disappearances and swiftly reallocating tasks to ensure continued system performance.

• Garbage Data Management: Erroneous or corrupt data, often referred to as ’garbage data’,

can significantly impede the efficiency of AI models. Developing robust methods for identifying

and handling such data is crucial for maintaining the accuracy and reliability of the predictive

maintenance system.

7.7.2 Dealing with Transient Network Losses

• Resilience to Network Fluctuations: Network instability or transient losses can disrupt the

communication between distributed nodes, posing a significant challenge for real-time data

processing and decision-making.

• Adaptive Data Transfer Mechanisms: Implementing strategies that adaptively manage data

transfer and processing during periods of network instability is essential for maintaining system

integrity and performance.
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7.7.3 Scalability and Adaptability

• Scalable AI Solutions: As the system grows, the AI Scheduler must scale accordingly, both

in terms of computational power and storage. Ensuring scalability while maintaining efficiency

is a key challenge.

• Adaptable Algorithms: The algorithms employed must be flexible enough to adapt to the

evolving nature of the distributed system, including changes in workload, node availability, and

system topology.

7.7.4 Predictive Maintenance in Distributed Systems

• Proactive Fault Detection: Implementing AI-driven predictive maintenance requires the

ability to not just react to system faults, but also to anticipate them based on patterns and

anomalies detected in the data.

• Customized Maintenance Strategies: The system should be able to devise and execute

tailored maintenance strategies for different parts of the distributed system, considering their

unique operational characteristics and requirements.

These challenges underscore the need for an advanced AI Scheduler project tailored to distributed

systems. Such a project should focus on developing innovative solutions that enhance predictive

maintenance capabilities, ensuring the resilience, reliability, and efficiency of the overall system. The

resulting system should be capable of intelligently managing resources, predicting and mitigating

faults, and adapting to the dynamic nature of distributed computing environments.
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