
DEVICE-EDGE-CLOUD INTELLIGENT COLLABORATION FRAMEWORK

Grant Agreement: 101092582

D2.1 Specification Of The Optimization Scope

This project has received funding from the European Union’s Horizon
Europe Research and Innovation Programme under Grant Agreement
No 101092582.

D2.1 Specification Of The Optimization Scope 2

Document Information

Deliverable number: D2.1

Deliverable title: Specification Of The Optimization Scope

Deliverable version: 1.0

Work Package number: WP2

Work Package title: AI-Scheduler for Optimization and Adaption

Responsible partner The Numerical Algorithms Group (NAG) Ltd.

Due Date of delivery: 2023-08-31

Actual date of delivery: 2023-08-31

Dissemination level: PU

Type: R

Editor(s): NAG

Contributor(s):

UGOE

GWDG

UNIBO

Reviewer(s):

Dirk Pleiter (KTH)

Karthee Sivalingam (Huawei)

Jonathan Decker (UGOE)

Project name: Device-Edge-Cloud Intelligent Collaboration framEwork

Project Acronym: DECICE

Project starting date: 2022-12-01

Project duration: 36 months

Rights: DECICE Consortium

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 3

Document History

Version Date Partner Description

0.1 2023-08-24 NAG, UGOE,
GWDG

Initial Draft

0.2 2023-08-26 NAG, UGOE,
GWDG,
UNIBO, KTH

Second Draft and Review

1.0 2023-08-31 NAG, UGOE,
GWDG,
UNIBO, KTH

Final Version

Acknowledgement: This project has received

funding from the European Union’s Horizon Eu-

rope Research and Innovation Programme un-

der Grant Agreement No 10192582.

Disclaimer: The content of this publication is

the sole responsibility of the authors, and in no

way represents the view of the European Com-

mission or its services.

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 4

Executive Summary

The main aim of this deliverable is to define, discuss and evaluate ways to optimize the DECICE

project by proposing a structural framework as well as possible improvements to it. The document

provides an overview of the project’s architecture, analyzes its core elements, and explains the

scheduling process mechanism. The primary focus, however, is on the discussion and evaluation of

optimization strategies. Methods for scheduling and optimization are summarized, along with an

in-depth examination of architectural elements such as the AI scheduler, Digital Twin, and synthetic

test environment. Furthermore, the document emphasizes the significance of metric aggregation

using Prometheus, which is crucial for designing the digital twin and training the AI scheduler as

well as enabling system health checks. Finally, the deliverable considers options for enhancing I/O

performance and highlights areas for further exploration such as federated learning and container

migration. As a result, the deliverable provides insights into the DECICE architecture, acts as a

roadmap for future improvements, and identifies potential challenges.

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 5

Contents

1 Purpose and Scope of the Deliverable 6

2 Abstract / publishable summary 6

3 Project objectives 6

4 Changes made and/or difficulties encountered, if any 6

5 Sustainability 7

6 Dissemination, Engagement and Uptake of Results 7

6.1 Target audience . 7

6.2 Record of dissemination/engagement activities linked to this deliverable 7

6.3 Publications in preparation OR submitted . 7

6.4 Intellectual property rights resulting from this deliverable 8

7 Detailed report on the deliverable 8

7.1 Overview of DECICE Architecture . 9

7.1.1 DECICE Framework . 10

7.1.2 Compute Plane . 11

7.1.3 Scheduling Workflow . 12

7.2 Overview of Scheduling and Optimization Algorithms 13

7.2.1 Linear Programming (LP) . 15

7.2.2 AI-Scheduler . 18

7.3 DECICE Architecture Components . 19

7.3.1 Dynamic Digital Twin . 19

7.3.2 Monitoring System . 24

7.3.3 Synthetic Test Environment . 27

7.4 Metrics . 28

7.4.1 Prometheus . 28

7.4.2 Optimization of Metric Collection . 31

7.4.3 I/O Awareness . 33

7.5 Additional Considerations . 33

7.5.1 Federated learning (FL) . 33

7.5.2 Container Migration . 36

8 References 37

A Prometheus Metrics 39

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 6

1 Purpose and Scope of the Deliverable

The purpose of deliverable 2.1: Specification of The Optimization Scope is to give an overview of

the architectural components within the DECICE framework and to define how these components

can potentially be optimized. By investigating the core components of the framework, we aim to

point out inefficiencies, bottlenecks, and opportunities for improvement. Moreover, this analysis will

aid in defining the scope of our improvement efforts, providing a better approach for the project’s

development.

2 Abstract / publishable summary

This deliverable presents definitions and consideration to find and discuss the key concepts and ideas

for optimization potential within the DECICE project with a focus on various core components of

the framework itself. We are proposing enhancements for refining its integral structure and also

improving the efficiency of the compute plane components. The document provides an overview of

the high-level architecture that represents the DECICE project, along with a comprehensive analysis

of its core elements and potential room for optimisation. We have also covered the scheduling

process mechanism for this architectural design. The key to our effort, though, is to improve these

components’ performance. As a result, we have provided a brief summary of the scheduling and

optimization methods. Additionally, this necessitates a thorough examination of crucial architectural

elements including the AI scheduler, the digital twin, and the synthetic test environment, each of

which is discussed in detail in its own part. Additionally, we covered the topic of metric aggregation

via Prometheus. These metrics play a crucial role in designing the digital twin that represents the

system digitally and to provide more data to the AI scheduler that needs to be trained with cluster

data. Our work also explores the critical parameters needed to boost I/O performance, a crucial

element in maximizing disk efficiency. We explore potential areas for additional thought after our

analysis is finished. The terms federated learning and container migration stand out among these.

These complex subjects have the ability to redefine the paradigm for edge devices, crucial elements

of the compute plane of the DECICE project. In conclusion, the work in this deliverable helps to

understand the functioning of the core parts of the DECICE architecture and explains them in detail.

It also acts as a road map for locating future bottlenecks and improvement opportunities.

3 Project objectives

This deliverable contributes directly and indirectly to the achievement of all the macro-objectives

and specific goals indicated in Section 1.1.1 of the project plan:

4 Changes made and/or difficulties encountered, if any

No significant changes to the project plan were made. No significant challenges were encountered

during implementation.

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 7

Macro-objectives Contribution of this deliverable

(O1) Develop a solution that allows to leverage
a compute continuum ranging from cloud and
HPC to edge and IoT.

The deliverable defines the high-level architec-
ture of DECICE and specifies the optimization
scope of its components.

(O2) Develop a scheduler supporting dynamic
load balancing for energy-efficient compute or-
chestration and automated deployment.

Defining an optimization scope helps to collect
valuable and suitable metrics and to improve
the schedulers’ training quality.

(O3) Design and implement an API that in-
creases control over network, computing and
data resources.

The deliverable depicts a Virtual Training Envi-
ronment that gives developers an environment
to design and improve APIs.

(O4) Design and implement a Dynamic Digital
Twin of the system with AI-based prediction ca-
pabilities as integral part of the solution.

The deliverable defines the Digital Twin compo-
nents and explains how these components can
be potentially improved.

(O5) Demonstrate the usability and benefits of
the DECICE solution for real-life use cases.

Designing optimized hardware and software in-
creases the performance of real-life use cases.

(O6) Design a solution that enables service de-
ployment with a high level of trustworthiness
and compliance with relevant security frame-
works.

Optimization of the scheduler will help to deploy
more reliable services and a security API will
apply security rules to the entire ecosystem.

5 Sustainability

Design and optimization of components in the project are tightly coupled to multiple WPs such as

WP2, WP3 and WP4. Every partner in each work package will communicate their result regularly

for an optimal integration of each component into the framework.

6 Dissemination, Engagement and Uptake of Results

6.1 Target audience

As indicated in the Description of the project, the audience for this deliverable is:

✓ The general public (PU)

The project partners, including the Commission services (PP)

A group specified by the consortium, including the Commission services (RE)

This report is confidential, only for members of the consortium, including the Commission
services (CO)

6.2 Record of dissemination/engagement activities linked to this deliverable

See Table 1.

6.3 Publications in preparation OR submitted

See Table 2.

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 8

Type of
dissem-
ination
and
commu-
nication
activities

Details Date and lo-
cation of the
event

Type of
audience
activities

Zenodo
Link

Estimated
number
of per-
sons
reached

None N/A N/A N/A N/A 0

Table 1: Record of dissemination / engagement activities linked to this deliverable

In prepa-
ration or
submitted?

Title All authors Title of the
periodical or
the series

Is/Will open
access be
provided to
this publica-
tion?

None N/A N/A N/A

Table 2: Publications related to this deliverable

6.4 Intellectual property rights resulting from this deliverable

None.

7 Detailed report on the deliverable

This deliverable deals with the technical description of the system characteristics and metrics neces-

sary for the scheduler and the supported user-requirements for jobs and workloads. For this purpose

the deliverable is divided into four major parts. The first section deals with the DECICE framework

and provides a detailed overview of the high-level architecture which is separated into two parts, the

framework itself and the compute plane. Afterwards a short description of an exemplary workflow

for a job submission is given. The second part of the deliverable deals with scheduling and optimiza-

tion algorithms which ultimately lay the foundation for the AI-scheduler of the DECICE model. An

outline for an optimal scheduling decision and how to achieve it is described and put into context

together with potential limitations and restrictions that might appear during a scheduling decision.

The third part of this deliverable details the core components of the DECICE framework regarding

the optimization scope. First the digital twin, which will represent the compute plane and serve

as the foundation for job placement for the AI scheduler, together with its internal structure and

requirements is discussed. Following the digital twin, the virtual training environment is introduced

and described. Its purpose is paving the construction of a sophisticated digital twin and AI-scheduler

by providing a training and testing ground with different scenarios and generated or accumulated

training data. This way different operational conditions can be build ranging from network or

hardware restrictions. The last chapter concludes the deliverable by giving insights into what kind

of metrics are necessary for a successful operation of the framework and thus need to be collected.

The metric section gives a concise overview of how data is being collected, processed and stored

using Prometheus as the backbone monitoring system for the DECICE framework.

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 9

A last chapter deals with considerations that have been discussed during the elicitation of this deliv-

erable and could lead to potential performance improvements of some components of the DECICE

framework but are outside of the scope of the project.

7.1 Overview of DECICE Architecture

The following chapter deals with the structure, description and operation of the DECICE architec-

ture. Figure 1 depicts an initial overview of this architecture. The framework is divided into two

main components: The DECICE framework itself, which is responsible for preparing and arranging

computational jobs, workloads and services, and the compute plane, which is responsible for the

actual execution of work and running services.

The subsequent color legend shows the interaction of the individual components in the framework and

illustrates the flow of data and information within the architecture. Any incoming arrows represent

that a component is listening for requests, while outgoing arrows represent active requests from a

component to another. Therefore, components that do not have any outgoing arrows are purely

passive but may respond to requests, while components that do not have any incoming arrows, do

not expose any interfaces.

The following Section 7.1.1 presents the DECICE framework in more detail, while Section 7.1.2 is

devoted to the compute plane and its description and functionality. Finally, in Section 7.1.3, an

example is given to characterize how the scheduling process works using the DECICE framework.

Figure 1: High-level DECICE Architecture

Color Legend

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 10

• Light Blue boxes: Components that are developed through the DECICE project

• Purple boxes: Components that already exist in some form and need to be deployed and

configured through the DECICE project

• Light Blue arrows: Part of system monitoring

• Purple arrows: Part of the scheduling and other automatic control loops

• Dark Blue arrows: Part of system administration invoked automatically or by admins

• Black arrows: Users and admins interacting with the system

7.1.1 DECICE Framework

The DECICE framework favors a component based composition for its architectural approach, which

enables switching between different implementations of the same component. Therefore, the plat-

form can be specified and implemented as a set of interfaces that reflect the organizational structure

of the project. Additionally, components interacting with external interfaces can be swapped out or

updated if the external interfaces change without affecting the internal components.

Whereas the compute plane consists of already existing software and libraries, the DECICE framework

does not come with pre-built implementations. Thus a development from the ground up is necessary

and consequently involves requirements engineering that reflects all conditions and use-cases the

framework needs to fulfill. Even though DECICE has three defined and worked out use-cases for

the validation of the framework (cf. D5.1) it is still missing an elicitation and specification of

requirements for the software architecture itself that is part of a future deliverable and will be

published as soon as they have been defined. For the time being Figure 1 serves as a basis for

understanding the minimal set of components that are required for the DECICE framework and

what interfaces to other components they need to provide.

Starting with the heart of the framework, the DECICE Control Manager is responsible for dealing

with the majority of the business logic and is central to almost all control flows in the framework.

In order to store settings, configuration and data relevant for the DECICE framework, the control

manager has its own database, the DECICE Config Store.

Another component the control manager might send requests to or receive from is the Platform

Specific Glue Code for the wrapper as well as the scheduler. These interfaces serve as an integration

of the control manager with the underlying platform. Here the compute plane is managed by

Kubernetes but by swapping them out, they could also support another orchestration platform

such as Hashicorp Nomad or Apache Mesos. The wrapper glue code serves as an abstraction for

controlling the KubeAPI without having to internally adhere to its expected syntax and having the

wrapper glue code translate requests from the internal representation to the format expected by the

KubeAPI. The scheduler glue code serves as an entry point for the underlying platform to request

scheduling decisions from the DECICE framework.

The DECICE API exposes two components for interactions with the underlying platform, the end

user API (job and telemetry) and the admin API (control and security). The end user API provides

interfaces to submit jobs, deployments and workloads. These submissions are processed by the

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 11

control manager and then stored to be considered during future scheduling decisions. Furthermore,

it can also be used to send queries to the metrics storage, while considering user permission to

determine what queries are allowed.

The admin API is capable of sending and receiving requests from the underlying platform admin

interface for further configuration and management. Admins may also bypass the DECICE API

entirely and work directly with the lower components if necessary.

The Metrics Storage utilizes endpoints to aggregate monitoring data from the system and regularly

pushes aggregated data to the Digital Twin (DT) and also queries the KubeAPI for additional

monitoring data. At its core this component will make use of Prometheus, a monitoring application

that records metrics in a time series database.

The DECICE model consists of the Digital Twin and potentially one or more scheduler options. The

DT contains aggregated metrics and system settings that are relevant for scheduling and job queues.

It is updated by the metrics storage and the control manager and queried by the scheduler to get

data for scheduling decisions. The DECICE scheduler is the key component for scheduling decisions

and job placement and it queries the digital twin to collect data for a sophisticated scheduling

decision and sends its results back to the control manager. It is capable of scheduling any number of

pods/jobs/workloads. For testing purposes or different use case scenarios additional schedulers may

be provided that utilize different scheduling methods (gang/batch scheduling, heuristic scheduling,

AI scheduling).

7.1.2 Compute Plane

The compute plane in a continuum compute platform is used to run user workloads across hetero-

geneous resources, including Cloud, High-Performance Computing (HPC), and Edge environments.

The compute plane represents a resource orchestration platform that is able to run containerized

jobs across a number of physical systems. In our case we consider Kubernetes as the resource orches-

trator and expand it with KubeEdge to be able to manage autonomous edge devices. The compute

plane utilizes Prometheus to gather metrics from devices as well as through Kubernetes/KubeEdge

interfaces.

The compute plane architecture may encompass various types of nodes within the compute con-

tinuum, however, all nodes of the continuum have a monitoring stack that captures node-local

data and makes it available for metrics storage via Prometheus exporters (see Section 7.4.1). The

Kubelet component of Kubernetes is also deployed on all nodes, except for the Edge Nodes, which

use EdgeCore (a KubeEdge component) instead.

The Cloud acts as the central component, connecting HPC and Edge environments. Cloud Master

Nodes run Kubernetes Control Plane with KubeAPI and etcd. The KubeAPI receives requests

from the DECICE Control Manager and sends scheduling requests to Platform-Specific Glue Code

(Wrapper), which is handled by the DECICE framework.

KubeEdge CloudCore exposes an endpoint that is reachable from the Edge Nodes. Edge Nodes

do not have to expose an endpoint to be able to communicate with the main cluster, instead they

regularly send requests to the CloudCore endpoint to receive new tasks. KubeEdge EdgeCore is

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 12

capable of autonomous operation of edge devices, even during disconnections from the Cloud, while

CloudCore ensures that the main cluster does not try to reschedule workloads running on an edge,

which has temporarily been disconnected.

In the Cloud, there are Cloud Worker Nodes that are part of the cloud infrastructure. In the HPC

environment, a Kubernetes stack is run on each node, and HPC Nodes are potentially equipped with

accelerators such as GPUs. In many HPC systems, the nodes do not have direct internet access and

rely on a proxy on the frontend nodes to access the internet in order to reduce the attack surface

and potential for malicious usage. This is considered in the design as care has to be taken to enable

the master nodes to use the proxy to communicate with the Kublets running on the HPC nodes.

Furthermore, the proxy is also used for communicating monitoring data and for nodes on the HPC

system to download data such as container images from the internet.

During later stages of the project, an integration with an HPC batch schedulers, such as Slurm,

will be further explored. Such an integration would require a bridge that is able to express Slurm

resources such that Kubernetes can work with them. This would potentially allow a dual usage

of HPC resources both as part of a compute continuum managed by the DECICE framework and

directly via the Slurm user interfaces.

The DECICE framework itself with its components also needs to run somewhere. Theoretically,

the DECICE framework could also run on the compute plane one the Master Nodes next to the

Kubernetes Control Plane. However, in order to provide better recovery from Master Node failure

in a production setup, the DECICE framework should run on extra nodes that a separate from the

compute plane.

7.1.3 Scheduling Workflow

1. The DECICE Control Manager updates the cluster via the platform-specific glue code wrapper

to set up new pods in response to a new requests coming into the system or rescheduling

2. Kubernetes notices that pods are pending that have no node assigned

3. Kubernetes requests a scheduling decision

4. The request is forwarded to the custom endpoint exposed by the platform-specific glue code

5. The glue code translates the request into DECICE’s internal representation and forwards it to

the DECICE Control Manager

6. The DECICE Control Manager considers relevant configurations from the DECICE Config

Store

7. The DECICE Control Manager triggers a refresh of the metrics for the Digital Twin from the

Metrics Storage

8. The DECICE Control Manager forwards the scheduling request to a scheduler installed in the

DECICE Model

9. The DECICE Scheduler pulls in the current system state from the Digital Twin

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 13

10. The scheduler considers the current system state and the queue of unscheduled jobs/pods and

then generates a scheduling decisions

11. The scheduler sends the scheduling decision back to the DECICE Control Manager

12. The DECICE Control Manager updates the Digital Twin accordingly and sends the scheduling

decision as response back to the platform-specific glue code

13. The glue code translates the response to a valid responds for the scheduling request and

responds to the original scheduling request

14. Kubernetes persists the response and acts on it

7.2 Overview of Scheduling and Optimization Algorithms

The second major objective of the DECICE project besides connecting Cloud, Edge and HPC into a

compute continuum is to establish optimized AI-driven scheduling systems that are capable of finding

near-optimal scheduling decisions for workloads across the compute continuum. As the underlying

platform for the prototype of the DECICE system, Kubernetes, and all the considered alternatives

(Apache Mesos, Hashicorp Nomad) are container orchestration platforms, the target for scheduling

decisions are containers. More precisely, pods, in the case of Kubernetes, which are single containers

or groups of containers that operate closely together. For example, one container might provide a

service and another container in the same pod might provide a proxy with queuing and rate-limiting

for that service. Kubernetes was chosen as it has become the de facto standard in terms of container

orchestration platforms [Car22] and is part of the graduated projects of the Cloud Native Computing

Foundation.

The task of a scheduler is to find a placement for a pod across all nodes that are part of a cluster. A

pod commonly has resource requirements in terms of memory and CPU time that should be available

on the target node. Furthermore, a pod might require more specific resources such as access to a

GPU or other special resources exposed to Kubernetes. Depending on the required resources and

the state of the cluster, a scheduling decision might not always be possible when no node is able to

fulfill the resource requirements. Then the pod has to wait for the cluster state to change such that

its required resources become available before it can be scheduled.

In addition to limitations in terms of availability, further scheduling restrictions might apply, such

as pods only being able to be scheduled on certain nodes or not on the same node as other pods.

The first case could be used to ensure that in a cluster with worker nodes with and without GPUs,

workloads that do not require a GPU, are not scheduled on the GPU nodes. The second case could

be used to ensure better availability of a service by distributing multiple instances of the service

across multiple nodes such that a node failure only takes down a single instance of the service and

not potentially all instances on a single node causing a service disruption or a complete failure.

When multiple pods await scheduling, the scheduler should consider the priority of the pods. Some

pods might provide cluster critical services, which are necessary for other pods to access resources

or for the cluster to function at all. The scheduler should place these pods first and it might even

be desirable to displace non-critical pods in favor of cluster critical pods if necessary.

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 14

After applying all the points listed above to not consider nodes that do not have the required

resources or that cannot be used due to scheduling restrictions, the first phase of common scheduling

approaches, Filtering, is completed. Now the scheduler can consider on which of the remaining

possible nodes the pod should be scheduled. In general, this process is called Scoring and involves

considering information about the nodes such as available memory and CPU time or the number of

pods already running on a node. Finally, the node with the highest score becomes the new home

for the scheduled pod.

Various techniques and algorithms exist that may be used to score a given node. Overall, according

to Ahmad et al. [Ahm+22] scheduling techniques can be classified into the following four different

categories:

1. Mathematical modeling: In this category, a scheduling problem is analysed as a set of con-

strained equations and solved using standard techniques such as Linear Programming or Integer

Linear Programming (ILP). Finding the optimal solution via ILP is considered an NP-complete

problem and, therefore, significantly limits the applicability of ILP to large clusters. ILP tech-

niques are discussed in greater detail in Section 7.2.1.

2. Heuristics: These are low complexity techniques, which generate scheduling solutions in a

reasonable time frame. They use a simplified set of rules to score nodes, which are not

guaranteed to deliver optimal results but are due to their simplicity and fast computation

good enough to be the default scheduler of Kubernetes. Well known heuristic strategies

include: first-fit, first-in-first-out, and Dominant Resource Fairness (DRF) [Car22].

3. Meta-heuristics: Are advanced approaches or heuristic methods developed to discover, create,

adjust, or choose a heuristic (a partial search algorithm) that can offer an acceptably effective

solution for optimization or machine learning challenges. This is particularly useful when deal-

ing with situations involving incomplete or imperfect data, or when computational resources

are restricted. Examples include genetic, particle swarm and ant colony optimisation. Never-

theless, the increased complexity of theses approaches in many cases limits their applicability

to large clusters due to high computational cost.

4. Machine Learning: ML techniques deal with training models based on available data and then

inferring scheduling decisions from said models. Deep neural networks are a promising method,

however, depending on the design and optimizations applied, this approach has the potential

to be computed in a reasonable amount of time or become as costly as ILP.

The quality of the decisions a scheduler can make in terms of optimizing resource utilization, stability

and performance depend not only on the technique used to reach the decision but also on the data

fed into the scheduler. Common factors such as memory usage, CPU time reservation and number

of pods already running on a node are used. Depending on the nature of the cluster, this might

be insufficient to reflect all potential angles for optimization, especially if the nodes of the cluster

are heterogeneous and excel at different kinds of tasks. For the DECICE project this is one of the

central reasons for creating a custom scheduler as Kubernetes by default expects all nodes to be very

similar and well connected but on a compute continuum, including Cloud, HPC and Edge nodes,

this does not hold true. See Section 7.4 for an in-depth discussion of how and what metrics are to

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 15

be collected in the DECICE project.

Finally, it should also be noted that scheduling by considering one pod at a time is not possible in

some cases. Some use cases require batches of pods to be scheduled at once when a workload is only

able to start operating when a certain number of pods is running at the same time. Should two such

workloads come into the cluster at the same time, a classical scheduler might end up giving 50%

of the available resources to each of the two workloads but both workloads might require at least

70% of the available resources to start processing. With both workloads waiting to be allocated the

remaining requested resources, they cannot start processing and the cluster is effectively in a dead

lock. The solution to this is to only start scheduling such a workload if a certain amount resources

are actually available and then to schedule them all at once. This is called gang-scheduling.

7.2.1 Linear Programming (LP)

Linear programming is a mathematical modelling technique in which a linear cost function is min-

imised (or maximised) when subjected to various constraints [NAG23]. Mathematically, it can be

expressed as follows:

min {F (x)} =

n∑
j=1

cjxj , (1)

where the total cost function F (x) associated with n continuous decision variables x are be minimised

subject to any linear constraints of the following form,

n∑
j=1

aijxj = bi, i = 1, 2, ..,m1 (equality)

n∑
j=1

aijxj ≤ bi, i = m1 + 1, ..,m2 (inequality)

n∑
j=1

aijxj ≥ bi, i = m2 + 1, ..,m (inequality)

xj ≥ lj , j = 1, 2, ..., n (simple bound)

xj ≤ uj , j = 1, 2, ..., n (simple bound) (2)

An extension of LP, Integer Linear Programming (ILP) is a standard technique which could be

employed for optimising different performance metrics while designing a container based scheduler.

Apart from satisfying equation 2, in ILP, the decision variables x are further restricted to take only

integer values. The scheduling problem is now recasted as a multi-objective optimisation problem

(MOOP).

Then equation 1 could be rewritten as

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 16

min {F (x)} =
n∑

j=1

cjfj(xi); (i = 1, 2, ..,m) (3)

Thus the total cost function F (x) is minimised by optimising individual objective functions fj(xi)

which in turn, depends on m decision variables xi.

(a)

(b)

Figure 2: (2a) Typical scenario of containerized application and (2b) Image pulling registry. Adapted
from [Zha+17]

To understand ILP application in the scheduling problem, let us consider a typical container deploy-

ment scenario discussed by Zhang et al. [Zha+17] and illustrated in Figure 2 [Zha+17]. Suppose

there are m client points such as networked desktops or Internet of Things (IoT) sensors. Each

client requests a job of a particular workload. A tth client requests a workload of Workload(t) units.

This job is scheduled in a data centre composed of n container hosts. The kth host has computing

capacity of Capacity(k) units (Figure 2a). There exists a network transition costs between the

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 17

client and host due to latency, bandwidth etc. Let the cost between k-th host and t-th client be

cost(k, t) units. To launch a container j, each host must pull an image i from the registry resulting

in pull cost(i, j). A container image is made up of several layers of file. So, pull cost is zero if all

the required layers are already present on the host. However, if some or all the layers of the file are

missing, then there exist an extra cost illustrated in Figure 2b.

Zhang et al. [Zha+17] further discuss that when in a given production environment, the t-th client

creates a task request with Workload(t), the workloads are split into batches to a number of

container hosts. After pulling the container images from the image registry, if not present, the

container hosts launch containers to execute the workloads.

The key issue in the whole workflow is the design of a scheduler to dispatch the workloads to

container hosts, which is able to meet the following criteria:

1. All the workloads from clients are containerized and processed in the hosts.

2. The workloads scheduled to a specific host cannot exceed the host’s computing capacity.

The goal is to optimize the energy consumption by the hosts, and the cost associated with pulling

an image from container registry and network transition of the workload. Due to constraints 1 and

2, we get the following two equations:

n∑
k=1

x(k, t) = Workload(t), (4)

where natural number x(k, t) is the workload scheduled on the k-th host by t-th client.

m∑
t=1

x(k, t) ≤ Capacity(k). (5)

Now, the cost of workload transition over the network could be defined as

f1(x) =
m∑
t=1

n∑
k=1

trans cost(k, t) x(k, t) (6)

The energy cost due to power consumption is defined as

f2(x) =

n∑
k=1

[(Pk,max − Pk,idle)× u+ Pk,idle] , (7)

where Pk,idle and Pk,max are the average power values for the k-th host, when the system is,

respectively, idle and fully utilised. The utilisation rate u in eq. 7 is defined as

u =

∑m
t=1 x(k, t)

Capacity(k)
(8)

Similarly, the cost of pulling the container image is given by,

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 18

f3(x) =
m∑
t=1

n∑
k=1

pull cost(k, t) y(k, t), (9)

where,

binary variable y(k, t) =

{
1, if the node k pulls the image t from the image registry

0, otherwise.
(10)

If y(k, t) = 0 then x(k, t) = 0. Taking into account equations 6, 7 and 9, the total cost function (

eq. 3) can be rewritten as a Multi-Objective Optimisation Problem (MOOP) in terms of individual

cost functions as,

F (x) = c1f1(x) + c2f2(x) + c3f3(x), (11)

Here the weighting coefficients ci are introduced to balance the three costs.

Kaur et al. recasted the scheduling tasks of Industrial IoT (IIoT) devices as a MOOP problem. The

solution was obtained within ILP formalism where objective functions which represented (i) carbon

emission footprints, (ii) sources of interference, and (iii) energy utilisation, were minimised [Kau+20].

Recently, ILP technique was applied to service operational cost minimisation problem when the

problem size was small. For larger sizes, ILP constraint was relaxed to a Linear Programming (LP)

problem [Li+23].

7.2.2 AI-Scheduler

An AI-scheduler utilizes some form of machine learning in order to develop a model that can then infer

scheduling decisions given the state of the cluster. Ahmad et al. [Ahm+22] describes the capability of

an ML-based scheduler compared to alternative approaches in terms of potentially better scalability

while also reaching better scheduling decisions compared to other scalable scheduling algorithms

such as heuristics.

In order to train a capable model, large amounts of training data is required [Sen+23], which is

rarely available. Therefore, many other researchers had to rely on synthetic or simulated data to

train their AI-schedulers. Depending on the optimization target for the scheduler as well as the

nature of the cluster that it will operate on, different data might be required. For example, in order

to find near-optimal scheduling decisions across a compute continuum including cloud, edge and

HPC, the scheduler would need to be aware of the capabilities of the heterogeneous nodes as well

as the network connectivity between them. This means that this data also needs to be available in

the training data.

Within machine learning there are multiple approaches [Car22] such as supervised learning, deep

learning and reinforcement learning. Deep learning could serve to find complex patterns in the data

and use these for improving the quality of scheduling decisions. Reinforcement learning on the other

hand would enable the scheduler to continue to learn from experience.

At this point the final strategy for the DECICE scheduler is still to be determined via experimentation

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 19

and comparison of these approaches. As the DECICE framework is designed to be able to switch

between schedulers at run time, multiple variations for the AI-scheduler can be tested in the same

setup. As a baseline for comparison serves the default heuristic scheduler and a naive FIFO scheduler.

Furthermore, [Sen+23] explains that there are multiple options for extending the default Kubernetes

scheduler by adding policies, plugins or by replacing it entirely. As by the design of the DECICE

framework, the default scheduler would be replaced entirely. Nevertheless, the two phase process of

filtering and scoring is still kept intact such that the ML model has the task of performing scheduling

decisions for a given system state including the queue of pending pods after filtering per pod has

been applied.

As input for inference and as training data serves the Digital Twin with the information on the system

it has stored including running jobs, pending jobs, hardware statics, hardware characteristics and

network. By utilizing this many metrics, it should enable the AI-scheduler to become context aware

as described by [Car22] and reach scheduling decisions that also consider stability and robustness.

7.3 DECICE Architecture Components

7.3.1 Dynamic Digital Twin

This section documents the requirements for the Dynamic Digital Twin. There are various definitions

of Digital Twin (DT) used in industry and academia [Jon+20]. In the context of the DECICE project,

we investigated the state of the art of digital twins and have arrived at a definition for a digital twin,

which will be discussed in the following.

A Digital Twin is an advanced model that represents the current and historical status of a system. A

system managed by the DECICE framework may span across a compute continuum, including Cloud,

HPC, Edge, and IoT devices. A Digital Twin is a digital representation of an intended or actual real-

world physical product, system, or process (a physical/real twin/entity) that serves as the digital

counterpart of it for practical purposes, such as simulation, testing, monitoring, forecasting, and

maintenance. With respect to DECICE innovation on the management of the computing continuum,

the digital representation, which is the core of the Digital Twin, can be expanded with additional

modules that support visualization, feature extractions, forecasting, and simulation. In this definition

of a Digital Twin, there are two main components: (1) the core Digital Twin, and (2) the Digital

Twin modules.

A functional Digital Twin may include baseline data about the infrastructure and live data collected

from sensors, as well as automatically collected and updated system characteristics. It can be used

for facilitating analysis and decision-making processes as well as data augmentation and training of

data-driven computing continuum policies/optimizations (like AI scheduler and Control Manager).

The remainder of the section is structured as follows: (I) Digital Twin key definitions in Software-

oriented-Architecture (SoA) and DECICE, (II) DECICE digital twin requirements.

(I) Digital Twin key definitions A survey by Jones et al. [Jon+20] provides a systematic liter-

ature review and thematic analysis of 92 digital twin publications, characterizing digital twins and

identifying gaps. The authors of the paper provide a list of themes and their associated descriptions,

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 20

which we have extended better fit the DECICE context. As DECICE targets the computing systems

(SW and HW), we have replaced the term ”Physical” with ”Real” and we will use ”Real” within the

deliverable but this can be translated to ”Physical” in management and manufacturing contexts.

In the DECICE project, we have different types of software and tools. Parts of these software

represent real entities, while others only exist as virtual entities, which gives a view and definition

for a DECICE Digital Twin compared to a SoA Digital Twin. For example, the scheduler is a ”real”

SW component in DECICE and, in general, in computing systems, but it is considered as a ”virtual”

entity, which provides optimizations in Digital Twins of manufacturing processes. Therefore, in

Table 3, we provide clear examples to define the themes that are known in the SoA of Digital Twin

and map the components and themes to their counterparts in DECICE.

Real-to-virtual and Virtual-to-real Twinning Processes According to the initial definition, a

digital twin is a virtual representation of a real entity that contains information about the real world.

The paper [Gri14] extends this definition by adding that a digital twin consists of three components:

a real entity, a virtual representation of the real entity, and bi-directional data connections that

feed data from the real to the virtual representation and vice versa. According to [Gri14], data and

information flow in both directions in a cycle between the real and virtual states, which is known

as mirroring or twinning. The virtual environment is composed of sub-spaces that enable specific

virtual operations, such as modeling, testing, and optimization. As already mentioned, we adopted

the terminology of ”Real” instead of ”Physical”. Figure 3 shows the real-to-virtual and virtual-to-real

twinning processes.

The real entity’s state is transferred to the virtual environment through real-to-virtual connections.

This process involves a Metrology phase, in which the real entity’s state is captured, and a Realisation

phase, in which the virtual entity is updated to match the real entity’s state. The virtual-to-real

connection allows the Digital Twin to physically change the state of the real entity. This involves

both metrology and realization phases, where virtual processes and metrology methods determine

(optimal) parameter values, and realization methods update the state of the real entity accordingly.

In DECICE the virtual-to-real connection is mediated by two additional components that are external

to the DECICE Digital Twin, namely the AI scheduler and Control Manager. These two components

closely interact with the DECICE digital twin by processing on-demand the digital representation of

the computing continuum contained in the digital twin. The actual realization of changes to the real

system occurs through job scheduling based on scheduling and re-scheduling requests. The Digital

Twin in the DECICE framework is a passive component that is kept in sync with the real system

and queried by the DECICE schedulers when making scheduling decisions.

Twinning is the act of synchronizing the real and virtual states of a digital twin. When a change

occurs in either the real or virtual entity, it is measured and then realized in the corresponding virtu-

al/real twin. The rate at which twinning occurs is known as the twinning rate, and can be specified

in real-time. In DECICE, this rate can be adjusted based on the requirements of the use cases and

different entities. Historical data is collected and reused within the virtual environment, allowing the

digital twin to learn from its past performance and virtual processes. In the DECICE digital twin,

this learning is captured by mean of ML models capable of representing complex relationship and

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 21

Table 3: DECICE Digital Twin Themes Descriptions.

Theme SoA Descriptions from [Jon+20] DECICE Descriptions
Real Entity A ‘real-world’ artifact, e.g., a vehicle, component,

product, system, model.
A ”real-world” artifact, in DECICE, refers to a comput-
ing continuum that spans HPC, Cloud, Edge, and IoT, as
well as the dependencies, applications, and software such
as AI scheduler that operate within it. All components of
DECICE are included except for the Digital Twin compo-
nents.

Virtual
Entity

A computer generated representation of the phys-
ical artefact, e.g., a vehicle, component, product,
system, model.

This is a computer-generated representation of a physical
or real entity. It includes components that are present in
the digital twin and digital twin modules. System struc-
ture description that includes the available components
and their compositions, as well as the current and his-
torical status of the system. Behavioral model and fore-
casting/evaluation, virtual training environment, visualiza-
tion/GUI, feature extraction, This part may also contain
various tools that utilize different techniques, such as sta-
tistical and machine learning methods, to generate new
features or information, such as anomaly detection and
prediction and power consumption prediction tools.

Real
Environment

The measurable ‘real-world’ environment within
which the physical entity exists.

This refers to the measurable ”real-world” environment in
which a real entity, such as the HPC, Cloud, Edge, or
software such as a job scheduler, exists.

Virtual
Environment

Any number of virtual ‘worlds’ or simulations that
replicate the state of the physical environment and
designed for specific use-case(s), e.g., heath moni-
toring, production schedule optimisation.

A digital twin is a virtual representation of a real environ-
ment. The digital twin is located within a virtual environ-
ment.

Fidelity/Levels
of Fidelity

The number of parameters transferred between the
physical and virtual entities, their accuracy, and
their level of abstraction. Examples found in lit-
erature include: fully comprehensive, ultra-realistic,
high-fidelity, data from multiple sources, micro-
atomic level to the macro-geometrical level.

The number of parameters transferred between the real
and virtual entities, their accuracy, and their level of ab-
straction. These may vary based on the significance of
the individual parameter and the added overhead on the
system for keeping a given parameter in sync between the
system and the Digital Twin.

State The current value of all parameters of either the
physical or virtual entity/environment.

The current value of all parameters of either the real or
virtual entity/environment.

Parameters The types of data, information, and processes trans-
ferred between entities, e.g., temperature, produc-
tion scores, processes.

Different types of data, information, and processes trans-
ferred between entities, e.g., CPU/GPU/Memory/Net-
work usage, Job and Queue parameters, job real power
consumption, job predicted power consumption. In the
context of DECICE the term ”metric” is mostly used for
parameters collected from different real entities.

Real-to-
Virtual
Connection

The connection from the physical to the virtual en-
vironment. Comprises of physical metrology and
virtual realisation stages.

The connection from the real to the virtual environment.
Comprises of physical metrology and virtual realization
stages.

Virtual-
to-Real
Connection

The connection from the virtual to the physical envi-
ronment. Comprises of virtual metrology and phys-
ical realisation stages.

The connection from the virtual to the real environment.
Comprises of virtual metrology and physical realization
stages.

Twinning
and
Twinning
Rate

The act of synchronisation between the two entities
and the rate with which synchronisation occurs.

This refers to the synchronization rate between two en-
tities. In DECICE, the twinning rate of different metrics
(entities) can vary depending on the use case and type of
parameter.

Real
Processes

The physical purposes and process within which the
physical entity engages, e.g., a manufacturing pro-
duction line.

The real purposes and process within which the real entity
engages, e.g., a job scheduling.

Virtual
Processes

The computational techniques employed within the
virtual-world, e.g., optimisation, prediction, simula-
tion, analysis, integrated multi-physics, multi-scale,
probabilistic simulation.

The computational techniques employed within the
virtual-world, e.g., visualization, optimization, prediction,
simulation, analysis, and feature extraction.

Perceived
Benefits

The envisaged advantages achieved in realising the
Digital Twin, e.g., improved design, behaviour,
structure, manufacturability, conformance, etc.

The envisaged advantages achieved in realizing the Digital
Twin, e.g., improved job scheduling, anomaly detection
and reduced system outage time, etc.

Digital Twin
across the
Product
Life-Cycle

The life-Cycle of the Digital Twin – (whole life cycle,
evolving digital profile, historical data)

The life-Cycle of the Digital Twin – (whole life cycle, evolv-
ing digital profile, historical data)

Use-Cases The applications of the Digital Twin, e.g., reducing
cost, improving service, supporting decision making.

The applications of the Digital Twin, e.g., reducing com-
puting cost, improving service, and supporting AI sched-
ulers.

Technical
Implementa-
tions

The technology used in realising the Digital Twin,
e.g., Internet-of-Things.

The technology used in realizing the Digital Twin, e.g.,
Internet-of-Things, APIs, MQTT protocol, IPMI, etc.

Data
Ownership

The legal ownership of the data stored within the
Digital Twin

The legal ownership of the data stored within the Digital
Twin.

Integration
between Vir-
tual Entities

The methods required to enable communication be-
tween different virtual entities.

The methods required to enable communication between
different virtual entities.

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 22

perform feature extraction of not directly observable key performance indicator (energy/performance

efficiency, reliability, anomalies) and forcasting.

Figure 3: Real-to-virtual and Virtual-to-real Twinning Processes.

(II) DECICE Digital Twin Requirements. Figure 4 shows a block diagram representing the

DECICE Digital Twin component. Starting top-down the digital twin has to interface with different

parts of the DECICE framework and computing continuum. It receives sensor information from

different real HW and SW platforms across the computing continuum and DECICE framework,

ranging from HPC to edge. The services provided by the Digital Twin are split into two main parts

- the Digital Twin Core and the Digital Twin modules.

Digital Twin Core The digital twin core consists of (i) the system structure description that

includes the available components and their compositions, as well as the (ii) current and historical

status of the system. The digital twin core receives information from various sensors and APIs

located in different parts of the physical/real twin or physical/real entity. It also provides the

necessary information to other parts of the DECICE environment, such as the AI scheduler and

Control Manager. Therefore, the digital twin core is primarily responsible for receiving the state of

real entities as input and providing raw data and processed information to the other parts of the

DECICE environment.

Digital Twin Modules The digital twin modules are a set of modules that extend the capabilities

of the digital twin. They consume the raw data provided by the digital twin core to provide an

augmented representation of the real entity capable of simulating the behaviour in different condition,

predicting future trends and estimating hidden states of the system (extracting features which are

not directly observable).

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 23

Figure 4: DECICE Digital Twin Component.

The digital twin modules consist of two parts: the Behavioral Model and Forecasting/Evaluation.

It creates the Virtual Training Environment that can forecast and evaluate different scenarios (more

information in Section 7.3.3), which is useful for conducting what-if analysis.

One of the main functions of this module is to use the current status of the job description and exploit

it to forecast future outcomes. Additionally, the digital twin module includes visualization/GUI

tools (e.g., Grafana) and feature extraction capabilities for NOT measurable parameters, which we

can generate different approaches using human experts, ML tools, and Mathematical tools. This

part may also contain various tools that utilize different techniques, such as statistical and machine

learning methods, to generate new features or information, such as anomaly detection and prediction,

energy and performance efficiency estimation and prediction as well as power consumption prediction

tools. Finally, there are also virtual entities, which employ a simulator or trained-model approach to

reconstruct a real entity in the digital twin.

Data Models The different tools may generate various data formats and models, but we require

an interchangeable format. Different parts of the DECICE framework and computing continuum

and those monitoring systems may have varying data formats and models, which can be related to

the nature of the data sources, use cases, or the contents of the monitoring system. However, in

general, JSON representation is useful for most parts of DECICE framework.

Digital Twin Requirements Imposed By AI Scheduler The scheduler is stateless, which means

it relies on the digital twin to understand the current state. It connects to the digital twin in a

tightly integrated manner but doesn’t make direct changes to it. As a result, the AI scheduler

imposes specific requirements, or metrics, on the DT. The monitoring system should provide these

metrics and data as input to the DT. To use the AI scheduler effectively, we must first consider the

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 24

requirements of our use cases. In general, data management, computation (CPU, GPU, memory,

and network), and location awareness are important features that the DT should provide. For

hybrid scheduling with Kubernetes and Slurm, the DT should provide additional metrics related to

these tools. Also, these metrics can be used to evaluate the performance of the AI scheduler, such

as minimizing the number of pending jobs and maximizing the number of idle nodes. For an AI

scheduler that handles the placement of data in the compute continuum, the DT system should

provide quality storage distribution (historic system state), which should be provided by other parts

of the system.

Digital Twin Input Data Requirements In the compute continuum and DECICE framework,

there are various real entities. To effectively work with the DT, it should have comprehensive inputs

from these entities. and the monitoring system is responsible for providing these inputs to the DT.

The detailed DT input requirements are documented in Section 7.3.2, where we documented the

monitoring system and important real entities, as well as metrics, APIs, plugins, and monitoring

software.

7.3.2 Monitoring System

Monitoring systems refer to the technical implementations that are used to collect and store the

information and provide input to the Digital Twin. These implementations include Internet-of-

Things, APIs, MQTT protocol, IPMI, and more. So, monitoring (and the metrics that it collects)

plays a vital role in ensuring the effectiveness of the Digital Twin. To implement the DECICE DT,

we need a holistic monitoring system that fetches updates on the current system state directly from

the underlying platform through its interfaces, such as the KubeAPI. The purpose of this document

is not to provide complete technical details, as it is impossible to finalize all technical details at this

stage of the project. Instead, we aim to give a high-level overview of the requirements and provide

examples of technical details and possibilities.

When considering the monitoring system, we need to focus on two key items. The first set of

resources and requirements are directly necessary for the monitoring system itself. The second set of

requirements is needed by modules that are closely integrated with the monitoring system and DT,

such as an AI model that can use historical data. For training purposes, this AI model requires a

querying task to extract data from the monitoring system’s database. This process leads to additional

compute resource utilization in the monitoring system. Additionally, we should consider the HW

and SW resources needed for future studies, such as those required for MLOps implementation (a

paradigm that aims to deploy and maintain machine learning models in production reliably and

efficiently).

The monitoring system comprises three main components: (i) primary data sources from the real

environment that the monitoring system must collect important metrics, (ii) APIs/plugins utilized

to establish connections, and (iii) software requirements in the DECICE framework, accessible across

the computing continuum, which encompasses HPC, Cloud, Edge, and IoT.

Important Real Entities for the Monitoring System In this section, we will provide examples

of real entities (tools) that are closely related to the monitoring system. It is important to note that

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 25

the monitoring system should be equipped with the capabilities to interact and utilize these tools in

order to ensure seamless integration and optimal performance.

Kubernetes Metrics Server: Kubernetes Metrics Server is an open-source component that collects

resource utilization data from various components within a Kubernetes cluster. It enables the

monitoring and autoscaling of applications running on Kubernetes by providing metrics such as CPU

and memory usage for pods, nodes, and containers. It is important to note that Kubernetes Metrics

Server is not intended for long-term storage of metrics or complex monitoring and alerting. For

more advanced monitoring and analytical capabilities, we consider integrating Metrics Server with

external monitoring systems such as Prometheus or using a dedicated monitoring solution.

KubeEdge: KubeEdge is an open-source system for extending native containerized application

orchestration capabilities to hosts at Edge. It is built upon Kubernetes and provides fundamental

infrastructure support for network, application deployment, and metadata synchronization between

cloud and edge.

Slurm (Optional): Slurm (Simple Linux Utility for Resource Management) is an open-source, highly

scalable cluster management and job scheduling system. It is primarily used in high-performance

computing (HPC) environments to efficiently allocate and manage computing resources across a

cluster of machines. Slurm provides a framework for managing and scheduling compute-intensive

workloads on a cluster. It allows users to submit jobs to the cluster, which can be a single node or

a large-scale cluster with thousands of nodes. Slurm handles the allocation of resources, scheduling

of jobs, and monitoring of their execution.

SEDNA (Optional): SEDNA is an open source edge-cloud synergy AI project targeting optimisa-

tion and utilization of resources across Cloud-Edge for AI training workloads. Benefiting from the

edge-cloud synergy capabilities provided by KubeEdge, SEDNA can implement across edge-cloud

collaborative training and collaborative inference capabilities, such as joint inference, incremental

learning, federated learning, and lifelong learning. SEDNA supports popular AI frameworks, such as

TensorFlow, PyTorch, PaddlePaddle, MindSpore.

Volcano (Optional): Volcano is an open source system built on top of Kubernetes to support high

performance batch and elastic workloads. Volcano supports popular computing frameworks such as

Spark, TensorFlow, PyTorch, Flink, Argo, MindSpore, and PaddlePaddle on different architectures,

such as x86, ARM and GPU. It supports rich scheduling policies and job management features for

Machine learning/Deep learning, Bioinformatics/Genomics and other big data applications.

HPC ODA System (Optional): Operational Data Analytics frameworks are a de-facto standard

in large-scale HPC installation and consist of a data collection and analysis platform oriented to the

management of big data. Their main prerogatives are to manage in a simple way heterogeneous

data, both in streaming and batch mode, and to allow the access to these data through a common

interface. This simplifies the usability of data supporting applications such as real time anomaly

detection, predictive maintenance and efficient resource and energy management using techniques in

the domain of machine learning and artificial intelligence. Given the scale of the monitored systems,

they have to be scalable and distributed. They are different from Prometheus as they are specialized

for collecting data from a scientific computing cluster, which does use batch scheduler and does not

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 26

support virtualization nor containerization.

Kubeflow (Optional): Kubeflow is an open-source machine-learning platform built on top of Ku-

bernetes that enables deploying and managing machine learning workflows on Kubernetes clusters.

It provides a variety of tools and frameworks to build, deploy, and scale ML models on Kubernetes.

Visualization and User Interface: In the DECICE project, there are various possibilities for GUI/Vi-

sualization of the computing continuum. We opt to use Prometheus and Grafana, which are both

open-source software. Prometheus is a monitoring system that can be used to collect and store

metrics from different sources, and Grafana provides a dashboard for visualizing the data collected

by Prometheus. By using these tools, we can have a more comprehensive view of the computing

continuum and better understand the different processes and data involved in the project.

Prometheus: Prometheus is an open-source monitoring and alerting toolkit originally developed by

SoundCloud. It is widely used in the field of cloud-native and containerized environments, including

Kubernetes. Prometheus is designed to monitor and collect metrics from various targets, such as

applications, services, and infrastructure components, in a highly scalable and efficient manner.

Prometheus is discussed in detail in Section 7.4.1.

Grafana (Optional): Grafana is an open-source data visualization and monitoring platform. It allows

you to create interactive and customizable dashboards to visualize data from various sources in real-

time. Grafana supports a wide range of data sources, including popular databases, cloud monitoring

services, time series databases, and more.

Key features of Grafana include: Data Visualization: Grafana provides a rich set of visualization

options, including graphs, charts, tables, and gauges. It supports real-time streaming and allows you

to create dynamic and interactive dashboards to monitor and analyze data. Data Source Integration:

Grafana supports integration with numerous data sources, such as Graphite, Prometheus, InfluxDB,

Elasticsearch, MySQL, PostgreSQL, and many others. You can connect to these data sources and

query data directly from Grafana to build visualizations. Dashboard Templating: Grafana allows

the creation of dynamic and reusable dashboards by utilizing template variables. These variables

can be used to filter data, switch between different data sources, and create more flexible and

interactive dashboards. Alerting and Notifications: Grafana provides built-in alerting capabilities,

allowing you to set up alerts based on specified conditions and thresholds. When an alert is triggered,

Grafana can send notifications via various channels such as email, Slack, PagerDuty, and others.

Plugins and Extensibility: Grafana has a large and active community that develops plugins and

extensions to enhance its functionality. One can install plugins to add new visualizations, data

sources, authentication methods, and more. Community and Ecosystem: Grafana has a vibrant and

supportive community that contributes to its development, provides support, and shares dashboards,

plugins, and integrations. The Grafana ecosystem is constantly evolving, with a wide range of

resources and community-driven projects available.

Grafana is widely used in various domains, including IT operations, DevOps, monitoring and observ-

ability, IoT, and industrial applications. It offers a flexible and user-friendly interface for visualizing

and analyzing data, making it a popular choice for building monitoring and analytics dashboards.

In the end, we can integrate all of these computing continuum monitoring tools and databases into

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 27

Grafana.

H.W. Requirements To meet the HW requirements of the monitoring, we need to consider

both the direct requirements of the DECICE project, which show what HW resources we need to

implement the monitoring system itself, and also the additional requirements for further R&D studies

and investigations that we can conduct using the virtual and real environments provided by DECICE.

The virtual environment’s lifecycle (which relies on the monitoring system) can even be longer than

the real one, and after the real entities are retired or disposed of, parts of the DT and monitoring

system can still survive for study purposes.

To store historical data of time series data of monitoring systems for long periods of time, we need

TSDB/NoSQL databases like KirosDB/Cassandra, which need storage for storing the data.

To implement most parts of the monitoring system, VMs are required, while Kubernetes resources

can be used for parts of the monitoring system and digital twin, such as MLOps. The amount of

hardware resources required for the complete implementation of the monitoring system is difficult to

define at this stage of the project. However, with VMs and a cloud environment, we can start with

minimal requirements and scale up as needed in the future.

There is an ongoing project in Unibo that is working on the hardware and software requirements

for the monitoring system and MLOps overhead. This study will reveal the detailed technical

requirements for the high-performance computing (HPC) side of the compute continuum of the

DECICE project.

7.3.3 Synthetic Test Environment

The virtual training environment (VTE) or synthetic test environment simulates the framework for

the DECICE model, which consists of the digital twin and AI-scheduler. By providing artificially

generated or curated data accumulated through provided datasets, the VTE is a digital construct

that resembles the actual DECICE environment and reflects the compute plane and metric collection

without having the need to actually setup a whole compute continuum. This simulated environment

allows for a faster, cost efficient and resource-saving training. The VTE constantly provides metrics

to the digital twin and AI-scheduler to enable the training process with different test scenarios such

as restricted network connections or hardware restrictions. Having a digitized real-world environment

enables the capability to to optimize the scheduler for different metrics such as performance, location

constraints or energy efficiency. Depending on the use case feature set such as historic information,

node architecture or node capabilities can be setup without having the need to actually provide these

features via real hardware. Depending on the simulated hardware and environment this can result

in vast cost savings during the training process.

The overall training process of the AI scheduler is depicted in Figure 5a. The virtual training environ-

ment loads a predefined scenario via a JSON file which is the foundation for the configuration of the

digital twin. While the VTE takes care of progressing the training and stepping through the scenarios

and providing constant metrics to the DT at the same time, the DT in return adapts to the newly

given metrics which can be accessed by the scheduler to perform scheduling decisions [Kun+22].

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 28

In contrast to the training cycle Figure 5b shows a real scheduling scenario without a VTE. In this

case the scheduling decisions from the AI-scheduler will not be used as a metric for analysis and

evaluation of the decisions made by the model, but rather forwarded by the control manager (CM)

to the underlying compute plane for a new scheduling task.

Since the prediction quality of the AI-model relies on training data to come up with plausible and

valid scheduling decisions, datasets need to be collected, processed and provided to the AI. For

this case the DECICE project will rely on several sources of data such as publicly available datasets

provided by Alibaba [Ali23] or Google [Goo19] and generated data by data centers from the GWDG.

7.4 Metrics

Since HPC and cloud infrastructures are becoming increasingly complex and powerful with more

resources at hand every year, these systems are not only capable of providing more processing

power and handling more computationally demanding problems in scientific research and engineering

simulations, but also generate a plethora of valuable metrics, which can be collected to optimize

the workloads across these systems. HPC and cloud workloads are already known to produce an

excessive amount of data when performing large-scale computations [Beh+15]. Collecting these

metrics can provide valuable insights into the performance, health and efficiency not only of an HPC

cluster but also a full compute continuum such as the DECICE project, which ranges from HPC to

cloud to edge devices and works as a heterogeneous compute plane.

For this task we will rely on Prometheus for the metrics collection. Prometheus is an open source

system that allows applications for easy monitoring and alerting capabilities [RV15]. The data

generated by the monitoring system will be used to adapt and optimize the AI scheduler and digital

twin that in return will enable a comprehensive scenario simulation, accurate bottleneck prediction,

and efficient resource allocation optimization across the heterogeneous cluster.

7.4.1 Prometheus

Prometheus utilizes a time series database, is a Cloud Native Computing Foundation (CNCF) grad-

uated project [Fou] and is directly supported by Kubernetes, making it a common choice in the

cloud native ecosystem. It has a comprehensive and multi-layered pull-based architecture, which is

depicted in Figure 6 with its individual key components are described below.

Data Collection: Prometheus uses a pull-based model for data collection, meaning it periodically

scrapes metrics from configured targets over HTTP. These targets can be exporters, which are small

processes responsible for exposing specific metrics from applications or systems. A commonly used

exporter is the Node Exporter for various server metrics.

Metrics Format: Prometheus stores time-series data in a metric name, a set of key-value pairs

called labels, a timestamp, and the actual value.

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 29

(a) Sequence Diagram of the Virtual Training Environment

(b) Sequence Diagram of the Scheduler and Digital Twin

Figure 5: Sequence diagrams of the DECICE framework
© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 30

Figure 6: Architecture of Prometheus, adapted from [Pro]

Storage: The scraped metrics are stored locally in a time-series database called the Prometheus

Time-Series Database. By default, Prometheus uses a local disk-based storage approach.

Querying: Prometheus provides a powerful and flexible query language called PromQL (Prometheus

Query Language). With PromQL, users can create complex expressions to retrieve and process data.

Alerting: Prometheus comes with an integrated alerting mechanism that allows users to define

rules to trigger alerts based on certain conditions and thresholds.

Graphing and Visualization: While Prometheus itself offers a simple expression browser, it is

often used in combination with Grafana, an open-source visualization tool.

Service Discovery: Prometheus supports service discovery, which allows it to automatically dis-

cover and monitor new instances or targets as they appear in the infrastructure. This can be achieved

through various integrations such as Kubernetes service discovery.

Prometheus Agent Mode: As the DECICE project is making use of cloud-native technologies in

conjunction with edge devices with a restricted amount of resources, the need for transferring data

to remote locations away from where they are actually produced becomes a necessity. Prometheus

offers an efficient way of metric forwarding for this use case specifically called Agent Mode. This

mode is optimized for application scenarios with limited or less powerful resources in which writing

is only done remotely (remote write) in order to limit the metrics that have to be stored locally.

Furthermore, due to the remote write strategy, the edge node only needs to be able to reach the

central Prometheus server and not the other way around. This solves the problem of the edge device

being in a different network than the main Prometheus server without forcing every edge device

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 31

to expose an endpoint publicly. Instead only the main Prometheus server has to expose a public

endpoint that is reachable from the edge networks. The overview is illustrated in Figure 7 below.

Figure 7: Prometheus Agent mode

The mode does not keep data after writing them to the remote centralized Prometheus server. If an

edge device in agent mode cannot reach the Prometheus server, which may happen on edge and IoT

devices, it keeps the data on the local disk of the edge device until the remote write gets accessible

and data can be pushed again.

7.4.2 Optimization of Metric Collection

Prometheus is able to collect a wide variety of metrics and data about the host system and store it

for further purposes such as logging and data analysis. The latter point is particularly interesting,

as the stored data serves as the foundation for the training of the AI scheduler and provides the

digital twin with constant flow of data. An excerpt of metric collection requirements can be found

in Table 4 with a collection of metric names accumulated in Appendix A.

Besides collecting these metrics there is also a risk of putting too much or unnecessary load on servers

or edge devices. Collecting metrics can be a resource-intensive task and if too many metrics are

collected, it can slow down devices where these metrics are collected from. To prevent a performance

decrease or latency increase the following strategies for load reducing can be considered:

• Appropriate Scraping Intervals: Instead of collecting metrics every second, metrics can be

collected with larger intervals (e.g., every 15 seconds or 1 minute). For some metrics, a higher

scraping interval may be sufficient without sacrificing the accuracy of monitoring.

• Aggregation of Data: Aggregate metrics locally where possible (e.g., sum, average, max)

before collecting them to reduce the overall data volume.

• Using Compression: Enable compression for data transfer between the servers and the moni-

toring system to reduce network usage.

• Using Push-Based Metrics: Where applicable, use push-based metric collection systems (e.g.,

Pushgateway in Prometheus) to offload the scraping responsibility from the monitored servers.

• Filtering Unnecessary Metrics: Only collect metrics that are essential for monitoring and

alerting requirements. Exclude irrelevant or low-priority metrics.

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 32

Table 4: Technical Details of Metric Collection (Digital Twin Input Data Requirements).

Monitoring Item Metrics (Digital Twin Input
Data Requirements)

API/Plugin Monitoring Soft-
ware

Job and Queue Job Completion and Status and
Queue Metrics
• Specification of the jobs
• Pending jobs
• Running jobs with their mapping
to resources

• Priority
• Restrictions
• Run time
• Statistics about job arrival
• Time of day
• Common burst times
• Workload model on non-cluster
resources required

• Jobs scheduled on a node
• Scheduler Performance

• HPC
– Slurm Plugin
– SlurmDBD

(Slurm Database
Daemon) API

– Slurm Daemon
Monitoring

• Cloud
– Kubernetes API

• Edge
– KubeEdge

(Kubernetes API)

• HPC: HPC mon-
itoring Systems
(ExaMon, and
Grafana), MySQL
or MariaDB, but
Slurm also supports
PostgreSQL and
SQLite

• Cloud and Edge:
Kubernetes Met-
rics Server and
Prometheus and
Grafana

HW Resources
(hardware statistics -
dynamically updated
information)
(hardware character-
istics - static per-
node/system informa-
tion)

• Network
– Actual real connections be-

tween components
– Simplify parallel connections,

data center 1 to cloud has 1
large connection

– Throughput, latency, error-
rate

– Reservations for a job
• CPU usage/ reservation/ type
• GPU usage/ reservation/ type
• Memory usage/reservation
• Currently available storage
– Local storage
– Totally available storage
– Storage technologies

• Metrics depend on platform
(HPC, . . . , IoT)
– Common metrics: metadata,

availability, latency
– Links between platforms

(bandwidth)
• Extensibility for potential future
platforms

HPC - IPMI HPC-
NVIDIA-SMI, or
DCGM, or NVML,
or NVPerfKit for net
and HPC

HPC monitoring Sys-
tems (like ExaMon,
and Grafana)

Kubernetes Kubernetes and
KubeEdge(Edge/IoT)
• Pod Scheduling Latency
• Pod Startup Time
• Resource Utilization
• Cluster Scalability
• Pod/Container Resource Con-
sumption

• Cluster Availability
• Network Performance
• Cluster Autoscaling Efficiency
• Pod and Node Health
• Cluster Management Overhead

• Kubernetes Metrics
Server

• Prometheus
• Kubernetes API
Server: Pod API,
Node API, Service
API, Deployment
API, Namespace
API, PersistentVol-
ume API, Ingress
API

• Kubernetes Metrics
Server

• Prometheus
• TSDB (In-
fluxDB, KirosDB,
TimescaleDB,
OpenTSDB)

AI Performance results of previously
scheduled jobs

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 33

• Optimizing Query Load: Carefully design and optimize PromQL queries to avoid excessive

loads on Prometheus during query evaluations.

• Using Blackbox Exporter: For monitoring services or endpoints that are not natively instru-

mented for Prometheus, consider using the Blackbox Exporter. It can perform lightweight

probes without putting additional load on main servers.

7.4.3 I/O Awareness

In Kubernetes, the default scheduler does not consider the heterogeneity of the underlying computing

resources when scheduling pods in computing clusters. The standard metrics provided by Kubernetes,

which are shown in Figure 8, offer a broad view of the system but lack the granularity needed

for comprehensive insights. Studies have shown that by collecting I/O metrics and providing the

k8s scheduler with these complementary information, can result in up to 15% better scheduling

decisions [Wu22]. This performance increase can also serve as a foundation for the DECICE scheduler

to incorporate I/O data into scheduling processes and will be elaborated in future deliverables.

Figure 8: An example of kubectl command for basic resource usage

7.5 Additional Considerations

This section discusses considerations and approaches that could lead to performance improvements

in certain cases but are outside of the DECICE project scope.

7.5.1 Federated learning (FL)

FL is a decentralized machine learning model in which a global prediction model is shared with

multiple edge devices. Each device trains part of the model with locally available or stored data and

only model updates, typically in the form of gradients, are sent to the central server. This scheme

reduces the usage of network bandwidth and enhances data privacy as local training data is not

transmitted.

As an example see the next-word prediction on a mobile keyboard [Har+18; Li+20], as illustrated

in Section 7.5.1. User input can be used to train language models across a large number of mobile

phones to predict the next word or phrase, enabling all users to benefit from auto-completing their

next word based on the predictions. However, users might wish to protect their privacy and would be

reluctant to share their data as well as wish to avoid wasting their limited bandwidth/battery power

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 34

on their phone. According to Li et al. [Li+20] federated learning algorithms have the potential to

demonstrate the feasibility and benefit of training language models on the historical data available

on client devices without exporting sensitive information to the servers.

In the setup shown in Section 7.5.1, each of the mobile phones gathers data based on user input

and trains part of the model based on the local data. During each communication round a subset

of mobile phones send their locally trained model as an update to the central server. This update is

much smaller than the raw data and does not easily allow for deducing the original user input from

the model. The updates from the users are incorporated on the server into a new global model,

which is then rolled out to a number of devices. Assuming no further updates to the training data,

this process lets the network eventually converge on a global model and the training process is

completed.

Figure 9: Demonstration of federated learning with mobile phones held by individual users as devices.
Adapted from [Li+20].

FL problem formulation Following Li et al. [Li+20], in the FL problem, statistical learning of a

single global model is achieved by processing data on, potentially, millions of edge devices. The aim

is to achieve updates to the model under the constraint that devices generate data that is processed

and stored locally. Only intermediate occasional updates are transmitted to the central server. The

goal is to minimize the objective function F (w),

min
w

F (w), whereF (w) :=
m∑
k=1

pkFk(w). (12)

Here, m is the total number of devices, pk ≥ 0 and
∑

k pk = 1. Fk is the local objective function

for the kth device, defined as,

Fk(w) =
1

nk

nk∑
jk=1

fjk(w;xjk , yjk), (12)

where nk is the number of samples available locally. Let the total number of samples be n =
∑

k nk.

Further, let pk be a user defined term which specifies the relative impact of each device. It can take

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 35

two natural values, viz., pk = (1/n) or pk = (nk/n). Here, xjk ∈ Rnin×1, and yjk ∈ Rnout×1 are

input and output training data, respectively [Che+21].

Scheduling in edge federated learning Edge devices are inherently heterogeneous. In each

iteration of a synchronous federated learning, the participating devices need to update their com-

putational results at the central server. Thus, training speed is dictated by the slowest device and

network bandwidth. Hence, an efficient scheduler needs to allocate optimal edge resources for a given

application. Currently, there are at least four major research directions to achieve this goal [Xia+21].

1. Participant selection: In this scheme, initially some nodes are randomly selected as participants

to perform the computations using their local private data for one iteration and their training

speed is analyzed. Further, the node selection is posed as a mathematical optimization prob-

lem based on the computational resources and previous training time information. Effect of

different scheduling policies, viz., random scheduling (RS), round robin (RR), and proportional

fair (PF) etc., are studied for a given problem setting [Yan+20].

2. Resource optimization: Due to the heterogeneity of edge nodes, the available resources in terms

of computational power and network bandwidth may vary drastically. To improve resource

allocation, nodes with more compute power should be given a bigger share of compute tasks.

3. Asynchronous training: The majority of edge federated learning research is focused on syn-

chronous training, however, asynchronous training could provide an opportunity to significantly

increase the capabilities of federated learning in heterogeneous environments.

4. Incentive Mechanism: In environments with independent users, it might be necessary to provide

some form of incentive to motivate users to collaborate in a federated learning network. Some

researchers have been looking into strategies for providing compensation to users to reward

them for their compute power of input data.

Federated Learning in DECICE The two main advantages of FL are privacy, due to not sharing

raw training data with peers, and reduced bandwidth usage, as raw training data is processed locally

instead of transmitted via a potentially slow network. This comes at the cost of having to provide

enough compute power to perform the train locally.

Assuming a number of nodes, including cloud and edge nodes, are controlled via the DECICE

framework then these nodes are all also running a Kubernetes or KubeEdge stack in order to connect

to the cluster. Furthermore, in this assumption, the edge nodes are connected to sensors that collect

data, which is interesting for training a machine learning model. If all the nodes are connected into

a cluster, they already have to trust the master nodes as these may submit arbitrary workloads on

the other nodes, including accessing the locally stored data. Therefore, the advantage of privacy via

FL is negated as there is no privacy for the edge nodes in this scenario from the master nodes.

Nevertheless, considering the second advantage of reduced bandwidth usage, if the training data is,

for example, a camera feed, then the network of the edge nodes could be incapable of streaming

this data to a central server while maintaining a level of quality required for training a ML model. In

this case, the solution would be to perform pre-processing or even training via FL on the edge nodes

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 36

to reduce the load on the network. This still requires the edge nodes to be capable of performing

said computations themselves.

While it is certainly possible for FL to operate on top of a cluster managed by DECICE and to

benefit from local computation, it still highly depends on whether a given use case can actually

benefit from FL and whether the hardware setup available also calls for FL. Given this limited

applicability, implementing federated learning on top of DECICE is currently not within the scope of

the project.

7.5.2 Container Migration

Container migration refers to the concept of relocating a running container from one node to another

without restarting the container. This is useful if restarting a given container would mean losing

important data while also having to move it to a different node, for example, because the original

node has to go down for maintenance.

In general there are two approaches to container migration, cold migration and live migration. For

cold migration, the migration process works by freezing the container process (or process tree) and

creating a checkpoint of the memory state of the process. This checkpoint along with the container

state on disk is send to the new server. There the container state and the memory checkpoint are

restored and unfrozen, letting the container continue to operate without a restart.

Cold migration has the problem that while the container is being migrated, it is frozen and if the

application running a service that service is disrupted until the migration is completed. If such an

interruption is not possible, a live migration is a solution to migrate the container without a restart

and without a service interruption.

For a live migration, the container is kept running and instead a duplicate of it is created on the

target server. The live migration processes syncs first the disk state and then the memory state,

starting with memory pages that have not been changed for the longest time. When the duplicate is

in sync, its process is also run and traffic coming into the original container is mirrored into the new

container. Once the new container is fully in sync, the mirrored traffic can completely switch over

to the new container and shut off the original container. A live migration is much more complicated

than a cold migration and should only be used when necessary.

While the ability to perform container migrations, both cold and live, would be a useful addition for

certain use cases and it would be possible to implement this functionality as part of the administration

tools of the DECICE framework, the actual implementation of such a feature is out of scope for the

current objectives of the DECICE project.

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 37

8 References

[Ahm+22] Imtiaz Ahmad et al. “Container scheduling techniques: A Survey and assessment”. In:

Journal of King Saud University - Computer and Information Sciences 34.7 (2022),

pp. 3934–3947. issn: 1319-1578. doi: https://doi.org/10.1016/j.jksuci.

2021.03.002. url: https://www.sciencedirect.com/science/article/pii/

S1319157821000562.

[Ali23] Alibaba. Alibaba Cluster Trace Program. 2023. url: https://github.com/alibaba/

clusterdata (visited on 08/28/2023).

[Beh+15] Babak Behzad et al. “Dynamic Model-Driven Parallel I/O Performance Tuning”. In:

2015 IEEE International Conference on Cluster Computing. 2015, pp. 184–193. doi:

10.1109/CLUSTER.2015.37.

[Car22] Carmen Carrión. “Kubernetes Scheduling: Taxonomy, Ongoing Issues and Challenges”.

In: ACM Comput. Surv. 55.7 (Dec. 2022). issn: 0360-0300. doi: 10.1145/3539606.

url: https://doi.org/10.1145/3539606.

[Che+21] Mingzhe Chen et al. “Convergence Time Optimization for Federated Learning Over

Wireless Networks”. In: IEEE Transactions on Wireless Communications 20.4 (Apr.

2021), pp. 2457–2471. issn: 1558-2248. doi: 10.1109/TWC.2020.3042530.

[Fou] Cloud Native Computing Foundation. Prometheus Project. url: https://www.cncf.

io/projects/prometheus/ (visited on 08/25/2023).

[Goo19] Google. Borg Cluster Workload Traces. 2019. url: https://github.com/google/

cluster-data (visited on 08/28/2023).

[Gri14] Michael Grieves. “Digital twin: manufacturing excellence through virtual factory repli-

cation”. In: White paper 1.2014 (2014), pp. 1–7.

[Har+18] Andrew Hard et al. “Federated Learning for Mobile Keyboard Prediction”. In: CoRR

abs/1811.03604 (2018). arXiv: 1811.03604. url: http://arxiv.org/abs/1811.

03604.

[Jon+20] David Jones et al. “Characterising the Digital Twin: A systematic literature review”.

In: CIRP journal of manufacturing science and technology 29 (2020), pp. 36–52.

[Kau+20] Kuljeet Kaur et al. “KEIDS: Kubernetes-Based Energy and Interference Driven Sched-

uler for Industrial IoT in Edge-Cloud Ecosystem”. In: IEEE Internet of Things Journal

7.5 (May 2020), pp. 4228–4237. issn: 2327-4662. doi: 10.1109/JIOT.2019.2939534.

[Kun+22] Julian Kunkel et al. Device-Edge-Cloud Intelligent Collaboration framEwork (DECICE).

https://cordis.europa.eu/project/id/101092582. Accessed: 10/2/2023. 2022.

doi: 10.3030/101092582.

[Li+20] Tian Li et al. “Federated Learning: Challenges, Methods, and Future Directions”. In:

IEEE Signal Processing Magazine 37.3 (May 2020), pp. 50–60. issn: 1558-0792. doi:

10.1109/MSP.2020.2975749.

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

https://doi.org/https://doi.org/10.1016/j.jksuci.2021.03.002
https://doi.org/https://doi.org/10.1016/j.jksuci.2021.03.002
https://www.sciencedirect.com/science/article/pii/S1319157821000562
https://www.sciencedirect.com/science/article/pii/S1319157821000562
https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata
https://doi.org/10.1109/CLUSTER.2015.37
https://doi.org/10.1145/3539606
https://doi.org/10.1145/3539606
https://doi.org/10.1109/TWC.2020.3042530
https://www.cncf.io/projects/prometheus/
https://www.cncf.io/projects/prometheus/
https://github.com/google/cluster-data
https://github.com/google/cluster-data
https://arxiv.org/abs/1811.03604
http://arxiv.org/abs/1811.03604
http://arxiv.org/abs/1811.03604
https://doi.org/10.1109/JIOT.2019.2939534
https://cordis.europa.eu/project/id/101092582
https://doi.org/10.3030/101092582
https://doi.org/10.1109/MSP.2020.2975749

D2.1 Specification Of The Optimization Scope 38

[Li+23] Jing Li et al. “Service Home Identification of Multiple-Source IoT Applications in Edge

Computing”. In: IEEE Transactions on Services Computing 16.2 (Mar. 2023), pp. 1417–

1430. issn: 1939-1374. doi: 10.1109/TSC.2022.3176576.

[NAG23] NAG. NAG library. 2023. url: https://www.nag.com/numeric/nl/nagdoc_

latest/flhtml/h/hintro.html (visited on 06/12/2023).

[Pro] Prometheus, an open-source systems monitoring and alerting toolkit. Architecture. On-

line; accessed July 15, 2023. url: https://prometheus.io/docs/introduction/

overview/.

[RV15] Bjorn Rabenstein and Julius Volz. “Prometheus: A Next-Generation Monitoring Sys-

tem”. In: Dublin: USENIX Association, May 2015.

[Sen+23] Khaldoun Senjab et al. “A Survey of Kubernetes Scheduling Algorithms”. In: Journal

of Cloud Computing 12.1 (June 13, 2023), p. 87. issn: 2192-113X. doi: 10.1186/

s13677-023-00471-1. url: https://doi.org/10.1186/s13677-023-00471-1

(visited on 08/29/2023).

[Wu22] Zheyun Wu. “An I/O-aware scheduler for containerized data-intensive HPC tasks in

Kubernetes-based heterogeneous clusters”. KTH, School of Electrical Engineering and

Computer Science (EECS), 2022, p. 51.

[Xia+21] Qi Xia et al. “A survey of federated learning for edge computing: Research problems

and solutions”. In: High-Confidence Computing 1.1 (2021), p. 100008. issn: 2667-

2952. doi: https: //doi .org /10. 1016/j .hcc .2021. 100008. url: https:

//www.sciencedirect.com/science/article/pii/S266729522100009X.

[Yan+20] Howard H. Yang et al. “Scheduling Policies for Federated Learning in Wireless Net-

works”. In: IEEE Transactions on Communications 68.1 (Jan. 2020), pp. 317–333.

issn: 1558-0857. doi: 10.1109/TCOMM.2019.2944169.

[Zha+17] Dong Zhang et al. “Container oriented job scheduling using linear programming model”.

In: 3rd International Conference on Information Management (ICIM). 2017, pp. 174–

180. doi: 10.1109/INFOMAN.2017.7950370.

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

https://doi.org/10.1109/TSC.2022.3176576
https://www.nag.com/numeric/nl/nagdoc_latest/flhtml/h/hintro.html
https://www.nag.com/numeric/nl/nagdoc_latest/flhtml/h/hintro.html
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://doi.org/10.1186/s13677-023-00471-1
https://doi.org/10.1186/s13677-023-00471-1
https://doi.org/10.1186/s13677-023-00471-1
https://doi.org/https://doi.org/10.1016/j.hcc.2021.100008
https://www.sciencedirect.com/science/article/pii/S266729522100009X
https://www.sciencedirect.com/science/article/pii/S266729522100009X
https://doi.org/10.1109/TCOMM.2019.2944169
https://doi.org/10.1109/INFOMAN.2017.7950370

D2.1 Specification Of The Optimization Scope 39

A Prometheus Metrics

Metrics Description
node disk reads completed total This is the total number of reads completed suc-

cessfully

node disk reads merged total -

node disk writes merged total -

node disk discards merged total Reads and writes which are adjacent to each other
may be merged for efficiency

node disk read bytes total This is the total number of bytes read successfully

node disk read time seconds total This is the total number of seconds spent by all
reads

node disk writes completed total This is the total number of writes completed suc-
cessfully

node disk written bytes total This is the total number of bytes written success-
fully

node disk write time seconds total This is the total number of seconds spent by all
writes

node disk io now The only field that should go to zero

node disk io time seconds total Number of seconds spent doing I/Os

node disk io time weighted seconds total Weighted # of seconds spent doing I/Os

node disk discards completed total This is the total number of discards completed
successfully

node disk discarded sectors total This is the total number of sectors discarded suc-
cessfully

node disk discard time seconds total This is the total number of seconds spent by all
discards

node disk flush requests total The total number of flush requests completed suc-
cessfully

node disk flush requests time seconds total The total number of seconds spent by all flush
requests

Table 5: Examples of I/O metrics

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 40

Metrics Description
node network receive bytes total The total number of bytes received by the interface

node network transmit bytes total The total number of bytes transmitted by the in-
terface

node network receive packets total The total number of packets received by the in-
terface

node network transmit packets total The total number of packets transmitted by the
interface

node network collisions total The total number of collisions on the interface

route table entries total The total number of entries in the routing table

route table prefixes total The total number of prefixes in the routing table

route table last updated seconds The time in seconds since the routing table was
last updated

link rx errors The number of receive errors on the link

link tx errors The number of transmit errors on the link

link duplex The duplex mode of the link (full-duplex or half-
duplex)

link speed The speed of the link in Mbps

icmp ping count total The total number of ICMP ping requests sent

icmp ping rtt seconds The average round-trip time of ICMP ping re-
quests

icmp ping packet loss The percentage of ICMP ping requests that were
lost

Table 6: Examples of network metrics

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 41

Metrics Description
kube pod annotations Kubernetes annotations converted to

Prometheus labels

kube pod info Information about pod

kube pod ips Pod IP addresses

kube pod start time Start time in unix timestamp for a pod

kube pod completion time Completion time in unix timestamp for a pod

kube pod owner Information about the Pod’s owner

kube pod labels Kubernetes labels converted to Prometheus la-
bels

kube pod nodeselectors Describes the Pod nodeSelectors

kube pod status phase The pods current phase

kube pod status qos class The pods current qosClass

kube pod status ready Describes whether the pod is ready to serve re-
quests

kube pod status scheduled Describes the status of the scheduling process
for the pod

kube pod container info Information about a container in a pod

kube pod container status waiting Describes whether the container is currently in
waiting state

kube pod container status waiting reason Describes the reason the container is currently
in waiting state

kube pod container status running Describes whether the container is currently in
running state

kube pod container state started Start time in unix timestamp for a pod container

kube pod container state started Start time in unix timestamp for a pod container

kube pod container status terminated Describes whether the container is currently in
terminated state

kube pod container status terminated reason Describes the reason the container is currently
in terminated state

kube pod container status last terminated reason Describes the last reason the container was in
terminated state

kube pod container status last terminated exitcode Describes the exit code for the last container in
terminated state.

kube pod container status ready Describes whether the containers readiness
check succeeded

kube pod status initialized time Time when the pod is initialized.

kube pod status ready time Time when pod passed readiness probes

kube pod status container ready time Time when the container of the pod entered
Ready state

kube pod container status restarts total The number of container restarts per container

Table 7: Examples of Kubernetes metrics

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

D2.1 Specification Of The Optimization Scope 42

Metrics Description
kube pod container resource requests The number of requested request resource by

a container. It is recommended to use the
kube pod resource requests metric exposed
by kube-scheduler instead, as it is more pre-
cise.

kube pod container resource limits The number of requested limit resource by
a container. It is recommended to use the
kube pod resource limits metric exposed by
kube-scheduler instead, as it is more precise

kube pod overhead cpu cores The pod overhead in regards to cpu cores as-
sociated with running a pod

kube pod overhead memory bytes The pod overhead in regards to memory as-
sociated with running a pod

kube pod runtimeclass name info The runtimeclass associated with the pod

kube pod created Unix creation timestamp

kube pod deletion timestamp Unix deletion timestamp

kube pod restart policy Describes the restart policy in use by this pod

kube pod init container info Information about an init container in a pod

kube pod init container status waiting Describes whether the init container is cur-
rently in waiting state

kube pod init container status waiting reason Describes the reason the init container is cur-
rently in waiting state

kube pod init container status running Describes whether the init container is cur-
rently in running state

kube pod init container status terminated Describes whether the init container is cur-
rently in terminated state

kube pod init container status terminated reason Describes the reason the init container is cur-
rently in terminated state

kube pod init container status last terminated reason Describes the last reason the init container
was in terminated state

kube pod init container status ready Describes whether the init containers readi-
ness check succeeded

kube pod init container status restarts total The number of restarts for the init container

kube pod init container resource limits The number of CPU cores requested limit by
an init container

kube pod init container resource requests The number of CPU cores requested by an
init container

kube pod spec volumes persistentvolumeclaims info Information about persistentvolumeclaim vol-
umes in a pod

kube pod spec volumes persistentvolumeclaims readonly Describes whether a persistentvolumeclaim is
mounted read only

kube pod status reason The pod status reasons

kube pod status scheduled time Unix timestamp when pod moved into sched-
uled status

kube pod status unschedulable Describes the unschedulable status for the
pod

kube pod tolerations Information about the pod tolerations

kube pod service account The service account for a pod

Table 8: Examples of Kubernetes metrics (Continued)

© 2023 DECICE Horizon Europe | HORIZON-CL4-2022-DATA-01-02 | 101092582

	Purpose and Scope of the Deliverable
	Abstract / publishable summary
	Project objectives
	Changes made and/or difficulties encountered, if any
	Sustainability
	Dissemination, Engagement and Uptake of Results
	Target audience
	Record of dissemination/engagement activities linked to this deliverable
	Publications in preparation OR submitted
	Intellectual property rights resulting from this deliverable

	Detailed report on the deliverable
	Overview of DECICE Architecture
	DECICE Framework
	Compute Plane
	Scheduling Workflow

	Overview of Scheduling and Optimization Algorithms
	Linear Programming (LP)
	AI-Scheduler

	DECICE Architecture Components
	Dynamic Digital Twin
	Monitoring System
	Synthetic Test Environment

	Metrics
	Prometheus
	Optimization of Metric Collection
	I/O Awareness

	Additional Considerations
	Federated learning (FL)
	Container Migration

	References
	Prometheus Metrics

