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ABSTRACT
DECICE is a Horizon Europe project that is developing an AI-
enabled open and portable management framework for automatic
and adaptive optimization and deployment of applications in com-
puting continuum encompassing from IoT sensors on the Edge to
large-scale Cloud / HPC computing infrastructures. In this paper,
we describe the DECICE framework and architecture. Furthermore,
we highlight use-cases for framework evaluation: intelligent traffic
intersection, magnetic resonance imaging, and emergency response.

CCS CONCEPTS
• Computing methodologies→ Parallel computing method-
ologies.
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1 INTRODUCTION
In the past decade, cloud computing has revolutionized computing
by providing services over the Internet that can scale elastically for
user requirements. The economics of scale have resulted in pow-
erful computing and storage resources being provided at reduced
costs. Furthermore, fault tolerance mechanism including replica-
tion allow to significantly enhance availability of services deployed
in the cloud. Moreover, various application areas including smart
home, smart city, or industrial automation come with needs that
require computing services to be deployed closer to the end-user.
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Edge computing complements cloud computing by placing com-
pute resources at the edge of the network [? ]. It also allows for
connecting Internet of things devices that utilize alternative wire-
less protocols such as LoRaWAN. While cloud and edge computing
do share some characteristics, there are also characteristics and
features that make edge computing unique. Placing computational
resources in the proximity of users or data sources reduces latency
and data transport and can even prevent shipping of sensitive data.
The trend of placing computing resources outside of the data center
has resulted in the emergence of the term compute continuum (or
cloud continuum) [? ]. Having a continuum of resources available
from the network edge (and beyond) to cloud and HPC data centers
has attracted increased interest, also in the European context [? ].
The emergence of a compute continuum is of particular interest for
workflows that extend beyond the data center and have to leverage
services that provide access to distributed edge, cloud, and HPC
resources across federated infrastructures.

Due to inter-dependencies between distributed components and
the potentially high level of heterogeneity of the compute, storage,
and network resources, the scheduling of these resources becomes
a huge challenge. The problem of finding the optimal scheduling
decisions may be NP-complete.

Moreover, dynamic factors such as faults, changing network
capabilities and system topologies require constant monitoring and
automatic adjustments to the placement of processes and data such
that the manual creation of good static assignments of processes
to hardware becomes infeasible. To overcome these challenges,
we believe that new approaches are necessary that include the
utilization of AI methods to facilitate timely resource allocation
decisions for complex systems with thousands of nodes.

This motivates the DECICE project. It receives funding from
the European Commission for developing an AI-based, open, and
portable cloud management framework for automatic and adaptive
optimization and deployment of applications in a compute contin-
uum. The framework relies on holistic monitoring to construct a
digital twin of the system that reflects all components and char-
acteristics of the system. This digital twin will supply schedulers
with information such that scheduling decisions for dynamic load
balancing and data placements can be reached. This will lead to
improved throughput and reduced resource consumption.

The framework’s prototype will be integrated into Kubernetes,
which is the most popular solution for orchestrating containers
in the cloud. Kubernetes itself has no built-in support for edge
computing. For this, DECICE relies on an extension of Kubernetes
that is called KubeEdge [? ] and allows for transparently integrating
edge nodes in the main cluster. Furthermore, to support HPC-like
batch job execution in Kubernetes [? ] the prototype will explore
the utilization of technology such as Volcano [? ].

The DECICE project is working towards the following:

• Development of a cloud management framework based on
open source and standards, which can seamlessly connect
and deploy applications to devices across HPC, cloud and
edge continuums.

• Providing system administration and DevOps tools to access,
control and manage the continuous service environment

that includes the deployment of network, computing, data
infrastructures and services.

• Creating a dynamic digital twin for heterogeneous infras-
tructure by supplying relevant data via monitoring systems
such that it can enable simulations and AI-based forecasting.

• Enhance application performance, reliability, throughput,
energy efficiency and cost by automating decisions for ap-
plication scheduling with the help of AI models.

The rest of this paper is structured as follows. Section 2 provides
context information. An overview of DECICE framework is pro-
vided in Section 3. Section 4 describes the architecture. The strategy
for evaluating the DECICE via use-cases is described in Section 5.
Section 6 concludes the paper.

2 CONTEXT
For the rise of cloud computing, the ability to provide virtualized re-
sources has been critical. Beyond virtual machines, containers have
become a widely used technologies with Kubernetes being the de
facto orchestration platform for managing execution of containers
at scale. Kubernetes is an open source container orchestration plat-
form that is able to dynamically handle containerized workloads
across thousands of nodes by assigning resources and virtualizing
networks. One of the major reasons for the widespread usage of Ku-
bernetes is its adaptability, which enables anyone to extend, replace
and remove various parts of these systems.

Before the times of cloud computing and container orchestra-
tion solutions, scaling resources available to a service required
proprietary solutions for integrating load balancing capabilities
and adding additional servers. Such approaches had various short-
comings as it was hard to roll out application updates or to dynam-
ically react to sudden bursts in service requests.

The virtualization offered by containers simplifies orchestration
systems like Kubernetes the choice of the physical machine for
running the service as long as it provides enough resources. This
works well for data centers with homogeneous hardware and fast
and stable networks. This situation changes in an environment
with different types of hardware as it is typically the case when
including edge devices.

Another challenge is that Kubernetes has been designed for cloud
computing data centers and not for distributed environments involv-
ing edge devices. This challenge has been addressed by KubeEdge [?
], which extends Kubernetes such that it is able to use edge devices.
The key features of KubeEdge are its lightweight Kubernetes in-
stallation for less powerful edge devices and a pull-based network
infrastructure. Via this network infrastructure, edge devices can
appear as regular nodes on Kubernetes. A key feature of KubeEdge
is an implementation of OSI network protocol layers that enables
connecting edge devices and cloud servers within one virtual net-
work.

With edge devices being added, the underlying set of hardware
resources becomes heterogeneous and, therefore, scheduling of
resources significantly more complex. Scheduling refers here to
algorithms that allow – based on the current state of available re-
source utilization – to decide on where to place a new container. To
the best of our knowledge there are currently no solutions available
to address the resulting scheduling challenges and to, e.g., decide



DECICE: Device-Edge-Cloud Intelligent Collaboration Framework CF ’23, May 9–11, 2023, Bologna, Italy

on whether to execute containers on cloud or edge nodes. For this,
the specific hardware characteristics of the available edge nodes
as well as the current network connectivity need to be taken into
account.

Container scheduling is an active research field with various
techniques being explored. Ahmad et al. [? ] classifies scheduling
techniques into one of four categories: (1) Mathematical modeling
techniques, (2) heuristic techniques, (3) meta-heuristics techniques
and (4) machine-learning techniques.

Mathematical techniques provide a mathematical description
of an optimization problem that must be solved taking a set of
constraints under account. Integer linear programming is a widely
used technique. A typical challenge with such techniques is that
they become too complex for large-scale systems and take too long
to solve.

Heuristic techniques are generally scalable and fast, however,
there is no guarantee for good scheduling decisions.

Meta-heuristic and machine-learning techniques have generally
become generally popular for optimization problems related to par-
allel computing systems (see [? ] for a recent survey). Meta-heuristic
techniques are based on search strategies for finding good but not
necessary optimal solutions for a given optimization problem. Typ-
ically nature-inspired algorithms are used [? ].

Machine-learning techniques train a model using data collected
in a given context. These models later allow to make scheduling
decisions based on what has been learned earlier, for instance by
using the model for making predictions about the number of needed
containers [? ].

For DECICE it is planned to use machine-learning techniques
for anomaly detection. Such techniques have already been suc-
cessfully used for HPC systems (see, e.g., [? ]). Furthermore, such
techniques have been used for reducing energy-to-solution (see, e.g.,
[? ]). Within DECICE extending such approaches to the compute
continuum will be explored.

Recently, a very significant increase of popularity of the digital
twin concept can be observed. It is based on the realization of one
or more virtual entities that describe a physical entity. A key feature
of digital twins is the twinning of the physical and virtual entities,
i.e., the implementation of physical-to-virtual twinning and virtual-
to-physical twinning processes [? ]. To the best of our knowledge,
the concept of digital twinning has not been applied to the case of
cloud-edge systems.

3 FRAMEWORK OVERVIEW
DECICE aims to develop an AI-based, open, and portable cloud
management framework for automatic and adaptive optimization
and deployment of applications in a federated infrastructure, in-
cluding computing from the very large (e.g., HPC systems) to the
very small (e.g., IoT sensors connected on the edge).

Working at such vastly different scales requires an intelligent
management plane with advanced capabilities that allow it to proac-
tively adjust workloads within the system based on their needs,
such as latency, compute power, and power consumption. There-
fore, we envision an AI-model, which can use a digital twin of the
resources available, to make real-time scheduling decisions based
on telemetry data from the resources.

Figure 1: An example of computing continuum

The DECICE framework will be able to dynamically balance
different workloads, optimize the throughput and latency of the
system resources (compute, storage, and network) regarding per-
formance and energy efficiency and quickly adapt to changing
conditions. The framework also provides the necessary tools and
interfaces for the administrators and deployment experts to inter-
face with all the infrastructure components and control them to
achieve the desired result.

The integration of the DECICE framework with orchestration
systems will be done through open APIs to make it portable, mod-
ular, and extensible. The DECICE framework will be co-designed
and evaluated through concrete use cases.

The system depicted in Figure 1 can be seen as an example of a
computing continuum executing a non-trivial application. Consider
an application that requires programs running on IoT devices to
collect data, which is transferred via two edge nodes to the cloud
nodes. Due to heavy computation and privacy requirements, a data
center might contribute compute resources and data volumes in a
private cloud. The results are then transferred back to the cloud
where they are served to the end users. Finally, the cloud offers
frontends that allow the end users to access the application and the
results of the computation, for example, via a webpage.

4 DECICE ARCHITECTURE
The DECICE framework is built on top of existing open-source
technologies that are already well-established in the community.

Kubernetes, KubeEdge, Prometheus, SEDNA and Volcano are
part of the Cloud Native Computing Foundation (CNCF), which is a
hub for many open source projects from the cloud native ecosystem

Figure 2: High-level DECICE architecture
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as well as over 250 members including many public cloud and
enterprise cloud vendors.

Application users deploying to cloud-edge face multiple chal-
lenges and are usually not experts in cloud management frame-
works or heterogeneous hardware resources. DECICE aims to help
such users by minimizing the effort required to efficiently utilize
diverse hardware devices for their application needs. For exam-
ple, users of the DECICE framework will be able to build hybrid
edge/cloud/HPC workloads using standard containers, knowing
that the DECICE scheduler will allow them to specify data locality,
network latency or other constraints and that the AI-based sched-
uler will place their jobs according to the requirements – and move
them if needed. Primarily these capabilities will be provided via
the careful selection of base technologies and use of standardized
interfaces for interacting with DECICE.

Users interact with DECICE via the standard Kubernetes in-
terface, which is extended with DECICE-specific extensions. This
allows them to use an existing, well-supported and familiar inter-
face. Furthermore, it allows the immediate movement of existing
workloads into DECICE and minimizes the “learning curve” re-
quired for users to begin using DECICE. The compute plane, the
DECICE Manager and the DECICE Model as illustrated in Figure 2
will be outlined in the following sections.

4.1 Compute Plane
The compute plane exists to run the user workloads. It is built on
existing open source technology, which is then integrated with
the DECICE components in the control plane. The primary com-
ponent in the compute plane is Kubernetes. It provides the basic
building blocks for running containerized jobs over multiple phys-
ical systems. Kubernetes is extended by KubeEdge to allow the
use and management of autonomous edge devices. Additionally,
Prometheus gathers metrics from devices via Kubernetes/KubeEdge
interfaces. Finally, SEDNA provides AI model training capabilities,
while Volcano adds the ability to run HPC jobs.

4.2 DECICE Manager
The DECICE Manager integrates the Digital twin and AI models
with the orchestration system (e.g., Kubernetes) through its stan-
dard API. This integration can be adapted to make the DECICE
framework portable across orchestration frameworks allowing in-
tegration with any commercial or open source cloud solutions.
Furthermore, the DECICE manager also includes a data reposi-
tory for storing metadata of infrastructure and applications as well
as monitoring data. This data is used to update the Digital twin
and train the AI-models. Moreover, the manager also provides a
synthetic training and test environment to simulate different in-
frastructure and application deployment scenarios for the training
of AI-models.

4.3 DECICE Model
The Dynamic Digital Twin is a virtual representation of an actual or
potential system at micro and macro level. It models the complete
life-cycle of the system using simulation, real-time monitoring and
enables forecasting, which is then used to make decisions. Creating
a digital twin of the heterogeneous cloud-edge infrastructure and

the deployed applications is one of the main goals of the project.
The DECICE twin models the compute, memory, storage and net-
work resources as well as the application tasks. Simulation and real
time monitoring are used to continuously update the model. AI
models are then used to forecast the system behavior in case of new
deployment or a failure. AI modeling is also used to continuously
predict the application performance based on the current state of
the system and makes suggestions of optimization or adaptation to
increase performance, energy efficiency, reliability and throughput.
These suggestions are then acted upon by the DECICE manager.

4.4 Virtual Training Environment
In order to train, improve and test AI models for scheduling, we
employ a Virtual Training Environment (VTE), which simulates a
Digital Twin (DT) based on a pre-configured scenario. The train-
ing process involves running the AI model under training against
training scenarios, updating the scenario and evaluating the perfor-
mance of the AI scheduler based on a set of metrics. This process is
depicted in Figure 3 with the VTE loading a given training scenario,
which in turn is used to configure the DT. Within the main loop of
the training, the VTE advances the scenario by progressing through
the scenario, which in turn submits additional updates in the form
of metrics and jobs to the DT. Afterward, the scheduler accesses
the DT to perform scheduling decisions.

As the VTE is responsible for advancing the scenario through
the simulation and the AI scheduler itself has no concept of past
states, it is possible to perform faster than real-time training. This
enables us to quickly train many instances of the AI scheduler in
parallel and keep the best performing instances for further training.

The training loop used by the VTE in Figure 3 is similar to the
scheduling loop that will be deployed on real systems. Instead of

Figure 3: Sequence diagram: Virtualized Training; VTE: Vir-
tual Training Environment; DT: Digital Twin
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a VTE, the real system is controlled by the Cloud Manager (CM)
and updates of the DT are pulled in from the Metrics System (MS)
and the CM. Furthermore, the scheduling decisions requested by
the CM are then forwarded to the underlying Kubernetes (K8s)
platform and realized.

Notably, the AI scheduler always views the entire DT, which
also includes the entire job queue and state of all running jobs. The
AI scheduler has no obligation to immediately schedule a newly
arrived job but its goal is to optimally utilize the underlying cluster
for all active and queued jobs while honoring the user specifications.
This also includes rescheduling running jobs if a better placement
becomes available by regularly reevaluating the system status.

Overall, the AI scheduler is able to view and optimize the en-
tire cluster through the DT. A common heuristics-based scheduler
operates by individually evaluating each queued job but could be
expanded to view all jobs at once. However, from our understand-
ing, this would highly increase the complexity of the used heuristics
without gaining value from a deeper understanding of the inter-
play of the components of the system as a machine learning-based
scheduler would do. We will also explore deep learning strategies.

4.5 CI/CD-Test Strategy
The objective of our CI/CD systems is to verify that all components
are functional individually and in composition. Components devel-
oped in the context of the DECICE project, such as the Cloud Man-
ager have their logic verified through individual component and
mock testing. As the DECICE systems integrate with an underlying
orchestration platform that also evolves together with its ecosys-
tem independently of DECICE, it becomes necessary to regularly
perform integration tests. For now, the prototype of the DECICE
systems only targets Kubernetes as an orchestration platform. By
definition, the DECICE systems should be usable by administrators
of heterogeneous compute systems that include cloud, edge and
HPC resources. Administrators may have additional requirements
such as using a specific version of Kubernetes on their systems,
which might be distinct from the version used to develop DECICE.
Therefore, the integration tests of DECICE cover a range of versions
that are commonly used to ensure compatibility.

The testing of individual components is done via unit and mock
testing. Integration testing, however, requires spinning up a tem-
porary Kubernetes cluster and deploying the components into it
before running tests on them. This allows using various configura-
tions, versions and additional elements (e.g., edge and HPC nodes)
over multiple test runs. In practice, we are looking at GitLab runners
for handling our CI/CD pipelines. They can be integrated with Ter-
raform and OpenStack to automatically roll out virtual machines,
install Kubernetes on them and deploy our systems into it. Such
a system enables us to perform complete end-to-end tests against
multiple versions of Kubernetes, KubeEdge and Volcano.

5 EVALUATION STRATEGY
In this section we describe our approach for evaluation of DECICE
framework. The DECICE project adopts a co-design process in or-
der to ensure that functionality and performance of the DECICE

solutions do meet demands for real-life challenges. Figure 4 de-
picts use-cases that are used for demonstrating the capabilities of
technology developed in this project.

5.1 Intelligent intersection
This use case focuses on real-time processing aspects in Connected
& Autonomous Driving and Cooperative Intelligent Transporta-
tion Systems (C-ITS). Connected and Autonomous Vehicles (CAVs)
use their onboard sensors for object detection and situation aware-
ness. Intersections introduce additional difficulties, challenges, and
safety issues due to varying road users in varying numbers moving
in different directions. Road user including Vulnerable Road User
(VRU) detection is crucial and critical to ensuring safety and traf-
fic efficiency. Road users which might be behind other objects or
corners may not be detected by onboard sensors in vehicles. This
poses risks to both road and driving safety and traffic efficiency.
In addition to sharing the status information of the vehicles, it is
aimed to share the information obtained from the sensors (e.g. cam-
era) in the vehicles and at the intersections with the road users
(vehicles, VRUs, etc.) in real-time. This approach is included by
C2C-CC in Day 2 and Day3+ applications. Cameras positioned at
an intersection continuously monitor the Region of Interest (RoI)
and the captured images/videos are analyzed for object (vehicle,
VRU, etc.) detection, which thereafter has to be shared with the road
users (vehicles, VRUs). Processing of images and communication
has to be in real-time (at low latencies) to provide safety and avoid
possible accidents.

The question arises on the level of hierarchy where the images
will be processed. It could be done in the cloud, or edge, depend-
ing on the requirements and cost of doing that. Accuracy, latency,
efficiency are the key technical performance metrics to measure.
Data communication between the camera, and the central cloud in-
troduces additional (communication) delay which is not acceptable.
Therefore, there are general aims of carrying some fast processing,
low latency, fast response applications at the edge, while learning
models can work at the edge and cloud. On the other hand, re-
source utilization, cost, and traffic safety are the business-related
performance metrics. DECICE provides an efficient, fast processing,
low-latency, energy-efficient edge and cloud computing continuum

Figure 4: Use-cases for DECICE evaluation: intelligent inter-
section, MRI, and emergency response
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that also considers the load at edge nodes due to the spatiotem-
poral variation of the users (vehicles, VRUs) and environmental
conditions (light, illumination, weather conditions, etc).

5.2 Magnetic resonance imaging (MRI)
MRI scans are a common tool for medical examination due to the
noninvasive way to get a view of the inner body parts. Typically,
MRI scans are conducted on edge nodes; they only cover individual
body parts of a patient and create a high-resolution 3D-image of
the body part using magnetic fields. Advances in technology lead
to higher resolutions and, consequently, larger data sizes. Like
other medical data, MRI scans often contain sensitive personal
information about the patient. Therefore, special care with respect
to storage, transfer and access is necessary. This use cases validates
restrictions on storage and access rights for data. Furthermore, a
fast and accurate analysis of the MRI scans is important, adding
fast compute times to the list of requirements.

The analysis of the MRI scans poses difficulties, both from a com-
pute and storage perspective. Each MRI scan consists of multiple
slices of data, thus creating a complex object for analysis. Complex
models for analysis can be challenging for the compute capabil-
ities of edge devices. Thus, moving analysis jobs to the cloud or
HPC system can be necessary. Managing access rights to the data,
the storage location of data and preventing data loss are key com-
ponents from the storage perspective. Additionally, the network
transfer can be a limiting factor creating a complex decision envi-
ronment. Instead of having users manually figure out a solution, the
DECICE schedule will map the data and tasks to suitable locations
and also adapt to changes in system topology.

5.3 In-the-field intelligence
In an emergency response, compute infrastructure and connectivity
in the mission area can be seriously disturbed and unreliable. To
enable continuous monitoring of the affected areas and an effective
response after a disaster struck, drones can be of help, data from
multiple sensors in the drones and also additional data sources
such as satellite images can be integrated to define mission areas or
extend the area of interest. Quadcopters are an interesting oppor-
tunity but they have limited mission time. Also, image processing
on board can be used but needs to be adapted to conditions, we
need flexibility of computation. Recharging stations can be used to
increase drones autonomy by also supporting upload of mission
plans, data gathering, and communication. The processing must be
optimized, the integration of external sources such as satellite data
to upgrade missions is possible.

We aim at developing an open digital platform to support emer-
gency response operators exploiting data from drones and satellites.
The objective is to bring intelligence in the operational activities in
the field, by providing the computation support for embedding ML
algorithms to support drone autonomous flight as well as mission
operations. To do so, the platform will implement an efficient and
adaptive computation of AI algorithms in-the-field, orchestrating
the processing and the communication between cloud/edge/drone
in a fault-tolerant fashion, allowing the operator to control the data
flows between the computation entities and providing the adap-
tivity in the system platform necessary to handle the emergency

situation, such as size of the area to be explored, recognition tasks to
be performed, communication link bandwidth, energy availability
and weather conditions.

6 CONCLUSIONS
The cloud computing industry has grown massively over the last
decade and with that new areas of application have arisen. Modern
cloud applications have also become more complex as they usually
run on a distributed computer system, split up into components
that must run with high availability.

In the DECICE project, our goal is to develop an open and
portable cloud-edge management framework for automatic and
adaptive optimization of applications by mapping jobs to the most
suitable resources in a heterogeneous system landscape and com-
pute continuum. By utilizing holistic monitoring, we construct a
digital twin of the system that reflects on the original system. An
AI-scheduler makes decisions on placement of jobs and data as
well as conducting job rescheduling to adjust to system changes
dynamically. A virtual training environment is developed that gen-
erates test data for training of ML-models and the exploration of
what-if scenarios. The portable framework is integrated into the
Kubernetes ecosystem, co-designed and evaluated using relevant
use cases on real-world heterogeneous systems. As this project was
starting in Q4/2022, we cannot yet present results but are actively
developing the DECICE framework at the moment.
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